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ABSTRACT 

 

Due to the great need to meet demand and remain competitive, companies are seeking to become more 

resilient, and thus systems must withstand, adapt to, and rapidly recover from the effects of undesired events. 

Resilience can be considered as the capacity of an entity to recover from a disruption, involving the ability 

to reduce effectively both magnitude and duration of the deviation from the nominal performance. This thesis 

proposes an optimization model, using Mixed-Integer Linear Programming (MILP), to support decisions 

related to making investments in the design of infrastructure critical systems that experience interruptions in 

supplying their customer demands due to disruptive events. In this approach, by considering the probabilities 

of the occurrence of a set of such disruptive events, the model minimizes the overall expected costs by 

determining an optimal strategy involving pre- and post-event actions. The pre-event actions, which are 

considered during the initial design phase, take into account the resilience capacity (absorption, adaptation 

and restoration). Although, according to the literature, pre-event resilience actions are faster in recovering 

the system, more useful and more cost-effective, especially when they are implemented during system 

design, most of research papers about resilience have focused on post-event policies. Therefore, in this work, 

in addition to post-event recovery actions, we corroborate with literature and consider pre-event actions so 

as to reduce recovery costs and increase recovery speed. The optimization model is thus developed and 

applied in two contexts: power grids serving industrial clients and a logistics distribution network. The 

results demonstrate that higher investments during the design phase, when optimally allocated, have the 

potential to improve infrastructure performance and still reduce overall costs. 

 

 

Keywords: Resilience. Design. Pre-event decisions. Infrastructure critical. Power grid. Logistic. 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

RESUMO 

 
Devido à grande necessidade de atender à demanda e permanecerem competitivas, as empresas estão 

buscando tornar-se mais resilientes e, portanto, os sistemas devem resistir, se adaptar e se recuperar 

rapidamente dos efeitos de eventos indesejados. Resiliência pode ser considerada como a capacidade de uma 

entidade se recuperar de uma interrupção, envolvendo a capacidade de reduzir efetivamente tanto a 

magnitude como a duração do desvio do desempenho nominal do sistema. Esta tese propõe um modelo de 

otimização, utilizando Programação Linear Inteira-Mista (PLIM), para apoiar decisões relacionadas à 

realização de investimentos em projeto de sistemas infraestrutura crítica que experimentam interrupções no 

fornecimento da demanda de seus clientes devido a eventos indesejados. Nesta abordagem, ao considerar as 

probabilidades da ocorrência de um conjunto desses eventos, o modelo minimiza os custos esperados totais 

ao determinar uma estratégia ótima envolvendo ações pré e pós-evento. As ações pré-evento, que são 

consideradas durante a fase inicial de projeto, levam em consideração a capacidade de resiliência (absorção, 

adaptação e restauração). Embora, conforme a literature, as ações de resiliência pré-eventos sejam mais 

rápidas na recuperação do sistema, mais útil e mais econômica, especialmente quando elas são 

implementadas durante a fase inicial nos projetos dos sistemas, a maioria dos trabalhos de pesquisa sobre 

resiliência se concentraram nas políticas pós-evento. Portanto, neste trabalho, além das ações de recuperação 

pós-evento, corroboramos com a literature e consideramos ações pré-evento, de modo a reduzir os custos de 

recuperação e aumentar a velocidade de recuperação. O modelo de otimização é, portanto, desenvolvido e 

aplicado em dois contextos: fornecimento de energia elétrica que atendem clientes industriais e uma rede de 

distribuição logística. Os resultados demonstram que altos investimentos durante a fase de projeto, quando 

alocados de forma otimizada, têm o potencial de melhorar o desempenho da infraestrutura e ainda reduzir 

os custos gerais. 

 
Palavras-chave: Resiliência. Projeto. Decisões pré-evento. Infraestrutura crítica. Fornecimento de energia. 

Logística. 
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1 INTRODUCTION 

1.1 Motivation for the Study  

Systems such as those for the distribution of electricity, water, oil, material supplies, and electronic 

communications correspond to Critical Infrastructures (CIs) by providing fundamental services to the 

economy and the routine operation of society. Many elements of CIs take the form of networks (Turnquist 

& Vugrin, 2013), with dependency among nodes and links, which in turn are usually interconnected with 

other networks. The efficiency of an entire CI depends on the availability of each element (Cardoso et al. 

2015); therefore, the occurrence of undesired and unexpected events, such as natural disasters, bad weather 

or a combination of other factors, can cause adverse and extended effects on the system, leading to social, 

environmental and economic impacts, although the probability of such events is usually low (Labaka et al. 

2015; Sawik, 2013). 

Disruption events can cause losses in different infrastructure systems: the August 2003 US blackout that 

caused transportation and economic network disruptions; 50 million people lost power for up to two days in 

the biggest blackout in North American history. The event contributed to at least 11 deaths and costs an 

estimated U$ 6 billion (JR, 2008). In 2011, a 9.0 magnitude earthquake and tsunami struck Japan, causing 

over 15,000 confirmed deaths and disrupting global supply chain networks (MacKenzie et al. 2012). Over 

the 2010-2011 summer, Australia’s second largest state, Queensland, was affected by widespread flooding 

that resulted in significant damage to six zone substations and numerous poles, transformers and overhead 

wires. Approximately 150,000 customers experienced power disruptions (Panteli & Mancarella, 2015).  

Besides that, a disruption event can cause losses not only to one system, but several infrastructure systems. 

Examples as Hurricane Sandy, which devastated New York in 2012, is among the more recent examples of 

a disruptive event that adversely impacted multiple networked systems. Months after the storm, power had 

not been restored to all communities in the New York area (Manuel, 2013) and one million cubic yards of 

debris impeded transportation networks (Lipton, 2013). In the Fukushima nuclear accident, several 

companies in Japan and over the world suffered disruptions in their supply chain (Zeiler, 2011). Companies 

such as Nissan and Toyota had to stop their production plants for several reasons: power cuts, oil shortage, 

lack of part and components supply due to the closure of suppliers (Zubieta, 2013).  

These recent examples show that the lack of sufficient prevention and preparedness level in a CI could lead 

to detrimental effects on other CIs and society. Therefore, infrastructure networks must be resilient and 

sufficiently flexible to overcome the consequences of the occurrence of disruptive events as rapidly and 

economically as possible (Hosseini & Barker, 2016).  

https://www.scientificamerican.com/article.cfm?id=how-the-grid-copes-when-nuclear-power-plant-goes-down
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Although the resilience concept has become increasingly important, there remain a significant number of 

distinct definitions, demonstrating Da lack of standardization to evaluate resilience, both qualitatively and 

quantitatively (Filippini, 2014; Linkov,2014; Zubieta, 2015; Hosseini & Barker,2016; Levalle & Nof,2015;). 

This work understands the concept of resilience as the ability of the system to reduce both the magnitude 

and the duration of deviations from target performance levels, given the occurrence of undesired events 

(Tang, 2006; Vugrin et al. 2010; Filippini,2014; Swierczek, 2014). 

According to Turnquist & Vugrin, (2013), models that focus on post-event strategies can frequently be time 

consuming, and they do not guarantee that one will identify an optimal or near-optimal set of actions that 

enable the most effective recovery for a variety of potential disruption scenarios. Thus, it is expected that 

pre-event strategies tend to be more efficient, useful, and profitable, especially when implemented during 

the design phase of a system. According to Linkov et al. (2014), strategies to build resilience during a 

system’s design phase can either minimize performance loss or increase recovery speed through redundancy, 

modularity, flexibility and independency between elements. 

Despite this finding, most of the research on resilience has focused on post-event policies, as seen in (Levalle 

& Nof 2015; Filippini & Silva 2014; Labaka et al. 2015; Świerczek 2014; Tang 2006; Mattsson & Jenelius 

2015; Bode et al. 2011), and thus the design of resilient systems remains a topic with limited research (Bode 

et al. 2011). However, there has been a trend for decision makers to change from a reactive stance to a 

proactive one; consequently, the concept of resilience has been increasingly incorporated into systems’ 

design phase (Mari et al. 2014). Moreover, there is a limited number of quantitative works focusing both on 

resilience and on the variables that affect system performance, such as cost of operation, customer service 

and investments in design (Mari et al. 2014; Cardoso et al. 2015). Therefore, designing a resilient 

infrastructure system is a prominent area for study because of its potential to enable improvements in 

network performance, and thus to provide benefits to customers by enhancing the service level, regularity 

and quality of the supply. 

Furthermore, under disruptive events, through resources allocation, systems can either reduce the impacts 

from a disruption or improve recovery time. How much decision makers should allocate to one of those two 

factors depends to a large extent on how they believe resources affect those factors and on the level and type 

of uncertainty (MacKenzie & Zobel, 2016). In addition, optimal resource allocation among infrastructures 

at the system level is critical for resilience enhancement due to the budget limitations (Zhang et al. 2018). 

Therefore, the present work aims to develop a quantitative model that determines the optimal allocation of 

financial resources to establish a resilience-based strategy. To this end, we consider the expected financial 

impacts of uncertain disruptive scenarios and confront them with a set of strategies of investment to support 
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decisions related to enhancing infrastructure systems resilience. Thus, similar to Turnquist & Vugrin (2013), 

our problem is modelled using Mixed-Integer Linear Programming (MILP) with the overall expected costs 

as the objective function, including the costs of pre-event decisions, the expected costs arising from the 

financial impact of disruptive scenarios on the network and the expected costs of post-event actions. 

We present two application examples of critical infrastructure systems to illustrate the applicability of the 

proposed models. First, in the context of power grid, four cases are analysed to explore the results for 

different situations regarding the probability of the occurrence of disruptive scenarios. The resilience-based 

strategy defined for each case minimizes the total expected costs and is analysed in terms of power grid 

overall performance, involving power grid configuration, demand satisfied and recovery time. Moreover, 

two individual scenarios are analysed, demonstrating how the model can be applied to propose an appropriate 

resilience-based strategy for a specific situation.  

Secondly, this work proposes an optimization model for resilience through cost modelling on a project of a 

logistics distribution network. The optimization model is thus developed and applied in the context of the 

logistics network design and it minimizes the overall cost associated with the occurrence of disruption 

events, trading off the cost of promoting an improvement on system's design against the expected cost of the 

impact on the system and recovery efforts from such disruption events. Different disruption scenarios 

probabilities are analyzed in order to show how these changes will affect the investments required to achieve 

an optimal resilient design.  

For both models, sensitivity analysis is also conducted to evaluate the impact of financial constraints for 

design investments compared to the overall performance of the infrastructure system and the overall cost. 

The results demonstrate that higher investments during the design phase, when optimally allocated, have the 

potential to improve infrastructure performance and still reduce overall costs. 

1.2 Objectives of this Research 

1.2.1 Main Objective 

The main objective of this thesis is to develop a quantitative model involving the evaluation of the expected 

financial impacts of disruptive scenarios in infrastructure systems. The evaluation of the expected financial 

impacts of disruptive scenarios in system aims to establish a resilience-based strategy, which determines the 

optimal design and allocation of financial resources. Such strategy may avoid or at least reduce the negative 

impacts on network performance due to disruptions, considering a set of investment alternatives  for 

resilience improvement. 
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1.2.2 Specific Objectives 

• To develop a quantitative model to support decisions related to make investments in the design of 

critical infrastructure systems; 

• To evaluate the resilience of infrastructure systems in meeting customer demand not only by 

designing a system in which resilience is increased but also by identifying how much resilience is 

improved when different possible ways to invest in the design of a system are considered; 

• To apply a scenario planning approach, defining sets of outcomes of possible disruptive events, 

weighted by discrete probability values to evaluate infrastructure systems decisions; 

• To show the applicability of the proposed models for two infrastructure critical cases: power grid 

serving clients industrial and logistics distribution network; 

• To establish a “view of the grid” from the perspective of client and focusing analysis on ways to 

improve the resilience of the infrastructure systems; 

• To provide a glimpse into the decisions that consumers can make that influence the resilience of the 

overall system; 

1.3 Structure of the Thesis 

This thesis is organized in five chapters as follows.  

The second chapter presents the theoretical background and literature review on resilience, including 

different approaches, applications and comparisons with other concepts. Chapter 2 also introduces useful 

concepts about CIs and their state-of-the-art in the context of resilience.  

The third chapter shows the characteristics of the Electric Power Supply Network (EPSN) considered and 

the formulation of the proposed optimization model. Chapter 3 also discusses examples to illustrate the 

applicability of the model. Four cases are analysed to explore the results for different probabilities of the 

occurrence of disruptions. Moreover, two severe scenarios, in which the probability of occurrence is lowest 

but the consequences are most serious, are selected to illustrate the model’s applicability.  

The fourth chapter presents a quantitative model that determines the optimal allocation of financial resources 

to establish a resilience-based strategy in the context of the logistics distribution network by minimizing the 

overall cost associated with the occurrence of disturbing events. Different disruption scenarios probabilities 

are analyzed to show how these changes will affect the investments required to achieve an optimal resilient 
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design. Finally, an application example is discussed, where the impacts include the additional cost of not 

being able to meet the demand given the occurrence of a disruptive event and that the recovery resources are 

limited. Finally, chapter 5 concludes remarks, showing the limitations of this study and presenting 

suggestions for future work. 



17 

 

 

 

2 THEORETICAL BACKGROUND AND LITERATURE REVIEW  

2.1 Critical infrastructures 

CIs are networks, services and systems “comprising identifiable industries, institutions (including people 

and procedures) and distribution capabilities that provide a reliable flow of products and services essential 

to the defense and economic security of all countries" (Rinaldi 2001). Luiijf & Klaver (2005) define critical 

infrastructures as ‘‘those physical and information technology facilities, networks, services and assets which, 

if disrupted or destroyed, have a serious impact on the health, safety, security or economic well-being of 

citizens or the effective functioning of governments”.  The American presidential policy directive on critical 

infrastructure security (Obama, 2013) identifies 16 critical infrastructure sectors: chemical, commercial 

facilities, communications, critical manufacturing, dams, defense industrial base, emergency services, 

energy, financial services, food and agriculture, government facilities, healthcare and public health, 

information technology, nuclear reactors, logistics systems, transportation systems, water and wastewater 

systems. Then, continuous supply of critical infrastructure services is essential for people, public and private 

organizations, and for the security and economy of the society as a whole ( Bruijne & van Eeten 2007). Thus, 

CIs has become the central system of the economy in all countries because it is not possible to achieve the 

goals of energy sustainability, economic or social development if the operation of its infrastructure network 

are at risk or vulnerable (Yusta et al. 2011). 

In recent years, the United States (US) Department of Homeland Security (DHS) and the European 

Commission (EC) have been concerned about the security of their country infrastructure because of new 

international threats. Examples of this policy include the Presidential Policy Directive 8 (PPD-8; Obama, 

2011) (Obama, 2011) and the Directive 114/08/EC, adopted by the Council of the European Union (CEU): 

‘‘on the identification and designation of European critical infrastructures and the assessment of the need 

to improve their protection’’ (The Council of the European Union 2008), which gave rise to the European 

Programme for Critical Infrastructure Protection (EPCIP) (Yusta et al. 2011).  

Within a CI network, there are several types of nodes such as: production nodes (e.g., factories, and power 

generation plant), storage/trans-shipment nodes (e.g., water supply reservoirs, warehouses, substations) and 

consumption nodes (end users). Regardless of the feedstock or product being considered, the network is 

characterized by a flow through links (roads, power transmission lines, water pipelines) from production to 

consumer, which form a connected network (Turnquist & Vugrin 2013). A set of costs associated with 

transporting materials, energy and products, and a set of constraints, such as production capacity, demand 

requirements and flow limits through links, typically determines the flow pattern within the network. 
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Nowadays, in order to provide this service to meet the demand and remain competitive in a global market, 

CIs have grown in size and complexity, becoming increasingly more interdependent locally, regionally and 

globally, constituting a system of systems (Eusgeld et al. 2011). However, as a result, they have also 

inadvertently increased their vulnerability, and the potential for disruptions events increases (Zubieta, 2013; 

Johansson et al. 2013).  

Moreover, the increase in the number of current terrorist attacks and natural disasters that threaten the proper 

functioning of CIs have increased the concern and the preoccupation regarding the reliability and safety level 

of CIs ( Bruijne & van Eeten 2007). It is because a partial or total disruption of elements of the network may 

cause a serious social, environmental, economic and political impact (Labaka et al. 2015). In this context, 

CIs must be highly reliable in performance to provide uninterrupted service. Thus, it is a must that 

infrastructure systems become more resilient, ensuring performance after unwanted events.  

2.2 The Concept of Resilience 

The word resilience has been originally originated from the Latin word “resiliere,” which means to “bounce 

back” (Hosseini et al. 2016). Although there is a lack of standardization when defining resilience (Vugrin et 

al. 2010; Francis & Bekera 2014; Henry & Ramirez-Marquez 2012; Panteli & Mancarella 2015), it is 

important to highlight that the concept has considerably evolved since the first definition put forth by 

Hollings in 1973, which defined resilience as a measure of “the persistence of systems and of their ability to 

absorb change and disturbance and still maintain the same relationships between populations or state 

variables” (Holling 1973).  

In recent decades, applications of resilience has widely been discussed and applied in numerous fields, such 

as economics (Rose & Liao 2005), organizational system (Reniers et al. 2014), safety management (Dinh et 

al. 2012), socio-ecological system (Chopra & Khanna 2014) and critical infrastructure (Hosseini et al. 2016; 

Panteli & Mancarella 2015). The common use of resilience implies the ability of an entity or system to return 

to “normal” condition after the occurrence of an event that disrupts its state. 

Several definitions of resilience have been offered. Many are similar, though many overlap with a number 

of already existing concepts such as robustness, fault-tolerance, flexibility, survivability, and agility, among 

others. Some general definitions of resilience that span multiple disciplines have also been given. For 

example, Haimes (2009) defined resilience as the “ability of a system to withstand a major disruption within 

acceptable degradation parameters and to recover with a suitable time and reasonable costs and risks.” The 

National Infrastructure Advisory Council (NIAC) defined resilience as the “ability to anticipate, absorb, 

adapt to, and/or rapidly recover from a potentially disruptive event” (National Infrastructure Advisory 

Council (NIAC) 2010).  
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Table 2.1 includes a summary and key characteristic of each definition referenced, including critical 

infrastructure resilience; resilience as a safety management paradigm; organizational resilience; socio-

ecological resilience and coupled ecological-engineered systems; and economic resilience. 

Table 2.1 - A brief of resilience definitions from different perspectives 

CATEGORIES 

OF RESILIENCE 

DEFINITIONS 

DEFINITIONS KEY PROPERTIES REF. 

Infrastructure 

systems 

The effectiveness of a resilient infrastructure or 

enterprise depends upon its ability to anticipate, absorb, 

adapt to, and/or rapidly recover from a potentially 

disruptive event 

-Ability to anticipate; 

-Ability to absorb -Ability to 

adapt 

(NIAC,2010)  

Safety 

Management 

system 

Resilience engineering is distinguished from traditional 

safety management in that, instead of identifying and 

alleviating risk factors, it aims to build on strong 

dimensions of a system so as to compensate for poor 

design or management in case of unanticipated 

disruptions 

-Strong dimensions 

-Unanticipated disruptions 

(Furniss et 

al. 2011) 

Organizational 

system 

Capacity of an organization to recognize threats and 

hazards and make adjustments that will improve future 

protection efforts and risk reduction measures 

-Capacity to recognize threats 

-Capacity to prepare for future 

protection efforts  

-Ability to reduce likely risks 

(DHS, 2010) 

Social system defined social resilience as comprised of three 

dimensions: coping capacities, adaptive capacities, and 

transformative capacities. 

-Coping capacities,  

-Adaptive capacities                    

-Transformative capacities 

(Keck & 

Sakdapolrak 

2013) 

Social-ecological 

system 

Resilience is a measure of the persistence of systems and 

of their ability to absorb change and disturbance and still 

maintain the same relationships between populations or 

state variables 

-Persistence to change  

-Ability to absorb change  

-Retain Relationships between 

people or state variables 

(Holling 

1973) 

Economic system Described economic resilience as the “inherent 

ability and adaptive response that enables firms and 

regions to avoid maximum potential losses.” 

-Ability to recover 

Resourcefulness  

-Ability to adapt 

(Rose & Liao 

2005) 

 

According to Hosseini et al. (2016), the review of resilience definitions indicates that there is no unique 

insight about how to define resilience. However, several similarities can be observed across these resilience 

definitions. Thus, according to Hosseini et al. (2016), the main highlights of resilience definitions reviewed 

above are summarized as follows: 

• Some definitions do not specify mechanisms to achieve resilience; however, many of them 

focus on the capability of system to “absorb” and “adapt” to disruptive events, and “recovery” is 

considered as the critical part of resilience; 

• For engineered systems, such as nuclear power systems, reliability is often considered to be 

an important feature to measure an ability to stave off disruption; 
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• Some definitions, such that of Sheffi & Rice Jr. (2005), emphasize that returning to steady 

state performance level is needed for resilience, while other definitions do not impose that the 

system (e.g., infrastructure, enterprise, community) return to pre-disaster state. 

• Some definitions such as Allenby & Fink (2005) and Adger (2000) defined resilience in terms 

of preparedness (pre-disaster) activities, while the role of recovery (post-disaster) activities are 

discarded. Definitions presented by organizations such as National Infrastructure Advisory 

Council (NIAC)  (NIAC, 2010) emphasized the role of both preparedness and recovery activities 

to achieve resilience. 

According to the literature, there are several definitions of the concept of resilience, but the majority focuses 

on the ability to anticipate, absorb and rapidly recover from an external, high-impact low-probability shock 

(Panteli & Mancarella 2015). In this thesis, we embrace a similar concept as presented by Vugrin et al. 

(2010), who define system resilience as the “ability to reduce effectively both the magnitude and duration 

of the deviation from targeted system performance levels, given the occurrence of a particular disruptive 

event”. This definition implicates that resilience is determined by a combination of the impact of the event 

on the system performance and the time and cost required for system recovery from this event. 

In addition, the concept of resilience is concerned with the resistance, flexibility and recovery of an entity 

(Francis & Bekera 2014), emphasizing that actions can be undertaken to mitigate of Impact on the System 

(IS). Thus, a resilient system is defined by the following capabilities:  

(i) Absorptive capacity – Vugrin et al. (2010) define absorptive capacity “as the degree to which a 

system can absorb the impacts of system perturbations and minimize consequences with little 

effort. That is, the capacity to anticipate, minimize and withstand the consequences of 

disturbances; 

(ii) Adaptive capacity – the capacity for reconfiguration in undesirable situations. Adaptive capacity is 

distinguished from absorptive capacity so that adaptive systems change in response to adverse 

impacts, especially if absorptive capacity has been exceeded. A system's adaptive capacity is 

enhanced by its ability to anticipate disruptive events, recognize unanticipated events, re-organize 

after occurrence of an adverse event, and general preparedness for adverse events (Francis & 

Bekera 2014). 

(iii) Restorative capacity – the speed and ease with which the system returns to normal operation.  

These three capacities make up the “resilience triangle” (Francis & Bekera, 2014) (Figure 2.1) and should 

ideally be considered during the design phase of a system to effectively mitigate IS. 
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Figure 2.1.The resilience triangle showing three major capacities that make up the resilience capacity of a system.                

Francis (2014) 

It has been realized that resilience as a concept involves several definitions. Although we introduced 

resilience as a function of absorptive, adaptive, and restorative capacities (Vugrin et al. 2010; Francis & 

Bekera, 2014; Hosseini et al. 2016), other concepts are also possible. For example, Lundberg & Johansson 

(2015) outline six “functions” in a systemic model, drawing primarily on resilience engineering, and disaster 

response: anticipation, monitoring, response, recovery, learning, and self-monitoring. The model consists of 

four areas: event-based constraints, functional dependencies, adaptive capacity, and strategy. Vlacheas et al. 

(2013) identified properties of resilience in the scope of telecommunication networks. They found that 

reliability, safety, availability, confidentiality, integrity, maintainability, and performance, along with their 

interactions, are most influential properties of networks resilience. 

In addition, some authors define resilience in “dimensions” and “principles”. The Multidisciplinary Center 

for Earthquake Engineering Research (MCEER, 2008) and Bruneau et al. (2003) break resilience down into 

four dimensions:  

• Robustness: refers to the strength or the capacity of a system or an element to resist the impact of a 

triggering event in terms of magnitude of the impact or loss of functionality; 

• Redundancy: refers to the extent to which components of the system are substitutable, or able to be 

replaced when functionality has been lost or reduced; 

• Resourcefulness: refers to the capacity to efficiently respond to a crisis, identifying problems, 

establishing solutions, and mobilizing the required resources; 
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• Rapidity: refers to the rate or speed at which a system is able to bounce back to the normal situation, 

and achieve goals in order to reduce the magnitude of losses and avoid future disruptions. 

Other conceptual framework for analyzing resilience, as well as some guiding principles and characteristics 

of resilient systems, can be found in (Abreu, 2012; Thomas et al. 2013; Hosseini et al. 2016; Ribeiro & 

Barbosa-Povoa, 2018). 

2.3 Resilience Assessment Framework for Infrastructure Systems 

Resilience assessment requires information about the disruptive events which an entity might be exposed to, 

such as their likelihood and their expected Impact on the System (IS), enabling the estimation of the 

resources necessary to bring the system back into operation. IS corresponds to the reduction of the system’s 

ability to perform an assigned function after the occurrence of disruptive events. Given this information, the 

system’s performance should return to its targeted level over time, incurring a Post-interruption Recovery 

Cost (PCR). In this thesis, both IS and PCR are measured as expected costs, weighted with the likelihoods 

of the disruptive events considered. 

This work focuses on setting a resilience-based strategy that determines the appropriate pre-event actions 

that have the potential to minimize IS by considering the capacities for resilience previously presented. The 

investments associated with these three capacities can be defined as Investments in Design for Resilience 

(IDR), comprising actions undertaken during the system’s design phase that seek to reduce both the impact 

and the system recovery time, as represented by Figure 2.2 

 

Figure 2.2 Relationship among IDR, IS, and the three resilience capacities. 

As seen in the arrows in Figure 2.2, the system designed to absorb and anticipate the impact of an unwanted 

event and to adapt to new conditions might have a low IS, and thus should be more resilient. In addition, the 

recovery speed is influenced by the investments to return the system to operation quickly. Thus, this thesis 

aims to demonstrate the important interactions between IDR and IS decisions, in which IDR could positively 

influence system resilience by increasing absorption and adaption capacities, shortening recovery time and 

consequently reducing IS. 
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2.3.1. Investments in Design for Resilience 

The pre-event decisions are defined as resilience strategies, which can be accomplished with the inclusion 

of absorptive, adaptive, and restorative capacities (Turnquist & Vugrin, 2013; Francis & Bekera, 2014; 

Levalle & Nof, 2015; Hosseini et al. 2016). Each scenario represents how an interruption may occur and has 

an associated probability. In this context, the possibilities for design decisions related to IDR are: 

• Investment in absorptive capacity: expanding the capacity of each node, allowing it to more easily 

weather the loss of one or more nodes; 

• Investment in adaptive capacity:  

a. Defining backup connections in the event that its primary node is inoperable or runs out of 

capacity (supplying client demand, for example, by the closest node). This investment allows 

the system to adapt to the loss of node operation by reconfiguring the material distribution 

network (e.g. products, energy and water);  

b. Establishing redundant lines between consumption nodes and the corresponding 

storage/trans-shipment nodes;  

c. Establishing temporary operating systems for operation, such as allocating diesel generators 

to keep manufacturing at least in partial operation during periods of power outage; 

• Investment in restorative capacity: investment in resources to allow faster recovery after a 

disruption, improving the node recovery rate by increasing resources reserved for hiring crews 

and buying spares. 

2.3.2 Impact on the System and Recovery Cost 

Post-event expected costs are associated with the financial impact IS caused by a disruptive scenario on the 

system performance and the efforts (PCR) to restore the system nominal capacity. The Impact on the System 

(IS) is the first quantity to be observed. In fact, the IS results in deviation from the desired performance, such 

as loss or reduction of capability to perform the designated function, losses in the volume and quality of 

production and contractual penalties for not meeting customer demand. As the system is designed to absorb 

these events, the lower the IS, the more resilient the system. After the reduction or loss of efficiency, the 

post-event actions include the efforts the system has to return to its nominal performance over time through 

Post-interruption Recovery Cost (PCR). 
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2.4 Evaluation of Critical Infrastructures: Resilience vs Other Concepts  

Under uncertainty, a CI can be assessed by different approaches, e.g., resilience (Francis & Bekera 2014; 

Vugrin et al. 2010; Barker et al. 2013), reliability (Salami et al. 2011; Johansson et al. 2013), risk (Kjølle et 

al. 2012; Utne et al. 2011; Garg et al. 2015; Rokstad & Ugarelli, 2015), robustness (Cuadra et al. 2015; 

Shukla et al. 2011) and vulnerability (Ramirez-Marquez & Rocco, 2012; Gedik et al. 2014). According to 

Hokstad et al. (2012), reliability is measured in terms of the probability that a system or a component can 

perform its required function at a given point of time under a given set of conditions. Traditional risk 

assessment in turn focuses on the likelihood and consequences of disruptive events, by understanding the 

nature of potential disturbances, characterizing their negative consequences and mitigating the level of risk 

which the system is exposed to (e.g., Kjølle et al. 2012; Garg et al. 2015). Robustness or vulnerability are 

often used to measure the extent to which a power grid has high or low reliability (Cuadra et al. 2015). 

According to Linkov et al. (2014), “resilience is not a substitute for principled system design or risk 

management. Instead, resilience is a complementary attribute that uses strategies of adaptation and 

mitigation to improve traditional risk management”.  

According to Hokstad et al. (2012), the scope of risk analysis is to calculate the probability and consequences 

of interruptions to certain parts of the network. On the other hand, resilience assessment emphasizes an 

evaluation of the system's ability to anticipate potential disturbances; accommodate internal or external 

changes to the system and establish response behaviours towards building the capacity to withstand the 

disruption or recover as quickly as possible (Francis & Bekera, 2014). In addition, another important aspect, 

which diverges resilience from a traditional risk assessment, consists of evaluating the performance of the 

critical infrastructure over time, where a resilience assessment must explicitly incorporate time into the 

analysis (Francis & Bekera, 2014), considering the evolution of the impact of an event on the system and its 

recovery. In this point, according to Linkov et al. (2016), “resilience analysis differs in a temporal sense 

from traditional risk analysis by also considering recovery of the system once damage is done. Thus, in 

addition to considering system decline immediately after an event (i.e. risk), resilience adds consideration 

of longer term horizons that include system recovery and adaptation.” 

Panteli & Mancarella (2015) in turn argued that the resilience concept encompasses all of the aforementioned 

concepts. Indeed, because risk assessment results in an understanding and mitigation of the potential 

disturbances, and robustness/vulnerability evaluation can help to identify weaknesses and candidates for the 

implementation of actions of resilience enhancement, these two approaches can serve as inputs to resilience 

analysis during the CI’s design phase. In contrast, reliability assessment can measure the effectiveness of a 

resilience-based strategy over time.  
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2.5 Literature Review 

The literature review for this thesis was exploratory, because the main objective was to look for and identify 

previous studies that could be drawn on with a view to proposing a model based on resilience design of 

critical infrastructure systems. Concepts of resilience have been studied regarding infrastructure networks in 

the areas of supply chain (Cardoso et al. 2015; Ambulkar et al. 2015; Brusset & Teller 2017; Lim-Camacho 

et al. 2017; Mancheri et al. 2018), hub-and-spoke network design (Chen et al. 2017; Zhalechian et al. 2018), 

transportation systems (Miller-Hooks et al. 2012; Faturechi & Miller-Hooks 2014; Faturechi et al. 2014; 

Zhang et al. 2015; Chen & Miller-Hooks 2012; Bhatia et al. 2015; Zhang & Wang 2016), natural gas 

networks (Carvalho et al. 2014; Feofilovs & Romagnoli, 2017), telecommunications (Omer et al. 2009; 

Brown et al. 2017), water supply networks (Chopra & Khanna, 2014; Baños et al. 2011; Diao et al. 2016) 

and designs for infrastructure (Ganin et al. 2016; Turnquist & Vugrin, 2013; Tran et al. 2017).  

Ganin et al. (2016) presented an approach that evaluates the effect of design parameters on the overall 

resilience of a network. The results showed that the desired levels of resilience are achievable by trading off 

different design parameters such as redundancy, available backup supply and node recovery time. Miller-

Hooks et al. (2012) propose a method for assessing and maximizing the resilience of an intermodal freight 

transportation network by incorporating preparedness decisions and recovery options given possible future 

disruptions.   

Diao et al. (2016) proposes a method of resilience analysis which is designed to assess the resilience of water 

distribution systems. This study proposes a approach that shifts the objective from analysing multiple and 

unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, 

i.e. potential failure modes. The work aims to evaluate a system's resilience to a possible failure mode 

regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the 

resilience of four water distribution systems with various features to three typical failure modes (pipe failure, 

excess demand, and substance intrusion). The results provide an overview of a water system's resilience to 

various failure modes. It is also shown that increased resilience to one failure mode may decrease resilience 

to another and increasing system capacity may delay the system's recovery in some situations. For a 

comprehensive review of the existing literature on definitions and measures on resilience of several systems, 

the interested reader can consult Hosseini et al. (2016). In this thesis, the literature review is focused on two 

main contexts which address supply chain and power grid resilience. 
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2.5.1 Resilient in Power Grid Systems 

In the field of EPSN resilience, there have been papers in the literature with both qualitative (Roege et al. 

2014; Mendonça & Wallace 2015; Mathaios Panteli & Mancarella 2015; Ghanem et al. 2016) and 

quantitative (Francis & Bekera 2014; Reed et al. 2009; Ouyang 2014; Kim et al. 2017; Fang & Sansavini 

2017; Dewenter & Hartmann 2015; Nezamoddini et al. 2017) approaches. For example, Panteli & 

Mancarella (2015) evaluated the impact of weather changes on the reliability, operation and resilience of an 

electric power network by observing the intensity, frequency and duration of severe weather events and 

proposing plans to increase EPSN resilience. Ouyang et al. (2014) used a probabilistic modelling approach 

to quantify electrical system resilience and economic losses, given the occurrence of hurricanes, assessing 

(i) hurricane risk, (ii) fragility, (iii) performance and (iv) restoration.  

Kim et al. (2017) investigated the topological properties of the South Korean Power Grid (KPG), including 

its resilience. Their study considered node-based and network-based measures to characterize the structural 

dimensions of a network and to understand its topology and resilience. The results obtained concerning the 

KPG were compared with random and scale-free reference networks. Finally, several suggestions were made 

to improve its resilience. Nezamoddini et al. (2017) discussed the power grid resilience against physical 

attacks. This paper addressed the problem of the transmission system security and develop an optimization 

model to determine the optimal investment decision for the resilient design of the transmission systems 

against physical attacks. The results showed that to extend power grid resiliency, it is necessary to develop 

comprehensive protection models that address cyber and physical attacks together and determine a more 

inclusive protection plan. 

 Fang & Sansavini (2017) considered investments in capacity expansion and backup to evaluate the 

performance of electrical transmission networks under nominal operations and after deliberate attacks.  

Dewenter & Hartmann (2015) studied the resilience of power-flow models to the failure of a transmission 

line, with resilience characterized in terms of the “backup capacity”, defined as the additional capacity of 

the links that must be supplied to secure stable operation of the link with the greatest load in case of an attack 

or a failure in that link.   

Münzberg et al. (2017) introduced an indicator-based spatial-temporal vulnerability assessment to enable 

crisis management groups and CI providers to enhance their understanding of the initial impacts of a power 

outage. The assessment results provide insights into the resilience of certain CIs and districts, and, hence, 

allow for simulating the effectiveness of considered preparation and response. The implementation of the 

assessment was demonstrated for the CIs of the health sector in the city of Mannheim in Germany. 
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According to Cuadra et al. (2015), there are two different approaches to evaluating power grid resilience. 

The first is solely based on topological concepts, using metrics such as the mean path length, clustering 

coefficients, efficiency and betweenness centrality (Wei et al. 2012; Prieto et al. 2014). The second, a hybrid 

approach, introduces some electrical engineering concepts in an effort to enhance the topological approach, 

using metrics such as electrical betweenness and net-ability (Guohua et al. 2008; Wang et al. 2015; Koç et 

al. 2014; Pepyne 2007; Dewenter & Hartmann 2015). For example, Guohua et al. (2008) presented an 

assessment of the North China power grid based on complex network theory to investigate the tolerance of 

the power grid to attacks. Pepyne et al. (2007) evaluated the resilience of a synthetic Watts-Strogatz network 

with 200 nodes and 400 links in terms of link attack schemes, disruption of the network and overhead lines.  

2.5.2 Resilient in Supply Chain 

Preparing for adverse events as if they are inevitable requires that regular evaluation of operational 

procedures, safety procedures, policy guidelines, risk assessment methods and countermeasures, which are 

key aspects of resilience assessment (Ivanov et al., 2016). Supply chain decisions can be distinguished into: 

(i) strategic: corresponding to investment decisions; (ii) tactical: according to short and long term goals, such 

as inventory policies; and (iii) operational: associated with everyday decisions, such as truck load (Diabat & 

Al-Salem, 2015). Building a resilient enterprise should be a strategic initiative that changes the way a 

company operates and that increases its competitiveness (Sheffi & Rice Jr., 2005). 

According to Sheffi & Rice Jr. (2005), market power coupled with responsiveness have the potential to 

create opportunities to solidify a leadership position, as the case of Nokia and Ericsson illustrates in 

(Heckmann et al. 2015), what exemplifies how the degree of awareness and preparedness may lead to 

different outcomes. Still according to Sheffi & Rice Jr. (2005), reducing vulnerability means reducing the 

likelihood of a disruption, while resilience relates to responsiveness to disruptions and can be achieved by 

either creating redundancy or increasing flexibility. Examples of redundancy are: safety stock, multiple 

suppliers and low capacity utilization rates. It is important to note that companies need to be careful about 

inventory management, as low inventory holding may limit immediate response capacity while extra 

inventory has proven to be detrimental to product quality and to lean operation. In contrast, flexibility relates 

to inherent capabilities of the system to sense and respond quickly to disruptive events. 

The design of such networks should incorporate the ecological principles of diversity, adaptability, 

interconnection and flexibility in order to increase emphasis on “safe-fail” rather than “fail-safe” (Francis & 

Bekera, 2014). Therefore, the definition of a resilience strategy must consider the costs of implementing 

these actions and their impact on mitigating the effects of certain disruptions. The occurrence of supply chain 

disruptions emphasizes that efficiency and effectiveness are conflicting objectives, as supply chain 
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efficiency is related to the minimization of operational cost while supply chain effectiveness refers to the 

satisfaction of customers’ demand (Heckmann, Comes, & Nickel, 2015). Focusing only on efficiency, for 

example, may prevent investments on flexibility to enable continuity or recovery of the network.  

Measuring resilience is still a questionable task, thus comparing the supply chains’ resilience is almost 

unfeasible.  Cimellaro et al.(2010) developed a framework to quantify system’s resilience to disasters, based 

on the level of system operation (robustness) and on the recovery time (rapidity). Azevedo et al. (2013) 

proposes an integrated Ecosilient index to reflect the resilience and greenness of companies and the corresponding 

supply chain. The proposed index is produced by the aggregation of a set of SCM practices related to green and 

resilient paradigms. Zhang et al. (2014) proposed a multi-objective optimization framework to support decisions 

related to supply chain planning, expansion and design, considering three objectives: total cost, Greenhouse Gas 

emissions and lead time.  

Cardoso et al. (2015), on the other hand, selected eleven indicators from the literature to apply in several 

network structures with different levels of flexibility, under different types of disruption. The aim of this 

paper was to identify which indicators are more suitable when comparing supply chains’ resilience. The 

eleven indicators address network design (node complexity, flow complexity, density and node criticality), 

network centralization (out- and in-degree centrality, based on the actual number of arcs and based on the 

actual amounts of flow circulating in those arcs) and operational performance (expected net present value, 

expected customer service level and investment). 

Lim-Camacho et al. (2017) used a network-based simulation approach to estimate the resilience of supply 

chains, particularly to disruption experienced during climate related extreme events. The work considers 

supply chain examples from three Australian resource industries – fisheries, agriculture and mining – that 

have experienced climate shocks in recent years. The results highlight the importance of considering the 

broader economic benefits of diversified chains, related to risk reduction, business continuity and improved 

system design in the post-disruption recovery phase. 

Zhalechian et al. (2018) developed a framework to design a resilient hub network under operational and 

disruption risks. The work proposed a novel bi-objective two-stage stochastic programming model which is able 

to account for both operational risks and disruption risks by considering several resilience strategies (i.e., 

improving network design characteristics, multiple allocation of hub nodes to spokes and fortifying hub nodes). 

Mancheri et al. (2018) presented a study on resilience in the tantalum supply chain.  The paper traced the 

entire value chain of the tantalum industry from mining to the intermediate and the downstream industries. 

The work aim was to see how dependent the tantalum supply chain is on specific countries, how exposed 

primary production is to disruptions, and what mechanism counteracts disruption. This study analyzed 
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several resilience-promoting mechanisms such as: (i) diversity of supply, (ii) material substitution, (iii) 

recycling and (iv) stockpiling.  Each of these mechanisms was evaluated, and find that even though diversity 

of supply and stockpiling mechanisms have been decreasing for years, the tantalum supply chain has been 

flexible in its response to disruption. 

The creation of a resilient supply chain can be achieved through the design of a network capable of absorbing 

the impacts of disruptive events by improving flexibility or building up redundancies. Thus, the 

incorporation of resilience into the system can be accomplished through pre-event investments, which 

correspond to the inclusion of three different capacities: absorption (anticipate and absorb disturbances to 

withstand and minimize its consequences), adaptation (rearrange network structure) and recovery (speed and 

ease by which the system returns to normal operation). Almost all definitions of resilience can be 

characterized by these three capacities, which correspond to the resilience pillars (Turnquist & Vugrin, 2013; 

Labaka, Hernantes & Sarriegi, 2015; Francis and Bekera, 2014). 

The impact of disruptions on the SC performance depends on the characteristics of both the incident and 

SCD (Thun & Hoenig, 2011). Most research work on resilience has focused on establishing post-event 

policies (Ambular, 2015), although pre-event actions are expected to increase system recovery speed and 

greater cost effectiveness, especially when they are implemented during the design phase of the system. 

Recent literature indicates more efforts on the development of pre-event strategies, in contrast to the adoption 

of a reactive posture (Bode & Wagner, 2015). Examples of these strategies are: (i) definition of back-up 

suppliers, (ii) definition of back-up depots, (iii) definition of alternative transportation channels and modes, 

(iv) capacity expansion, (v) inventory buffer and (vi) facility fortification (Ivanov, Pavlov, et al. 2016).  

2.5.3 State of the art and Contribution of the work 

Due to the increased focus on structural dimensions of resilience, a limited number of quantitative studies 

focusing on resilience and the variables that affect system performance, such as the cost of post-disruption 

operation, customer service and investments in design (Dixit et al. 2016). Therefore, the present work aims 

to fill this gap by assessing the resilience of infrastructure systems in meeting customer demand, not only by 

designing a system with increased resilience, but also by identifying how much resilience is improved when 

considering different possible methods to invest in the design of a system. 

In this context, the main contribution of our work is to propose an optimization model using MILP to make 

decisions related to investments in the design of CI resilience with a focus on the customer perspective. Our 

work evaluates how costs associated with investments in the design phase can reduce both the impact and 
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recovery efforts over time, given the occurrence of an undesired event. In other words, we can now determine 

how financial resources should be spent to design a resilient CI. 

Furthermore, even with the variety of applications of resilience, to the best of the authors’ knowledge, the 

aforementioned articles do not consider the impact of disruptions to the electricity supply on industrial 

clients. Indeed, most of the resilience literature has overlooked differences among customers and their needs. 

Thus, our goal is to assess power grids’ resilience with a focus on the industrial client perspective (Kwasinski 

2016). Therefore, the proposed framework is intended to establish a “view of the grid” from the perspective 

of an industrial client; thus, our focus is not to address different types of failures in the main electrical power 

grid but to improve the resilience of the power supplies connected to industrial clients. In this manner, we 

provide a glimpse into the decisions that consumers of electric power can make that influence the resilience 

of the overall system. 

Additionally, in contrast to (Fang & Sansavini 2017; Kim et al. 2017; Ouyang 2014; Chen & Miller-Hooks 

2012; Pepyne 2007; Dewenter & Hartmann 2015; Prieto et al. 2014; Wei et al. 2012; Guohua et al. 2008; 

Wang et al. 2015; Koç et al. 2014; Cuadra et al. 2015; Kwasinski 2016), this work evaluates the performance 

of the electricity supply over time by examining the evolution of the impact of disruptive events on the 

system and its response. Despite the importance of considering this factor, the vast majority of work on 

power grids has not included the time dimension in its analyses of resilience (Haimes 2009; Henry & 

Ramirez-Marquez 2012; Francis & Bekera 2014).
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3 EMBEDDING RESILIENCE IN THE DESIGN OF THE ELECTRICITY SUPPLY FOR 

INDUSTRIAL CLIENTS 

This chapter was published  as an original research article in the Journal PLOS ONE (Moura et al. 2017). 

3.1 Problem statement 

Critical infrastructures have undergone and are currently undergoing large changes. They are becoming more 

dependent on each other (Ghorbani & Bagheri, 2008). In addition, they are increasingly connected across 

geographical borders, and thus become more large-scale. These trends make the critical infrastructures more 

efficient, but at the same time more complex and more vulnerable, and the potential for large-scale 

disruptions increases (Johansson et al. 2013). As such, improving the structural and functional resilience of 

critical infrastructure systems to various natural and man-made hazards has always been an important 

problem to public and research disciplines (Chang, 2009). 

Among critical infrastructure systems, Electric Power Supply Networks (EPSNs) are especially critical 

because other CIs rely on electricity to manage and operate their processes (Francis & Bekera, 2014; Kim et 

al. 2017). Despite the importance, regulatory authorities have noted a disconcerting increase in the frequency 

and severity of electrical grid disruptions (Summaries, 2014). Data from several studies estimate that the 

annual costs to the U.S. economy due to blackouts are between US$ 20 billion and US$ 55 billion (Campbell 

2012). Moreover, although the increasing number of disruptions may be attributed primarily to changing 

environmental and climactic conditions, the grid's increasing technological complexity and operational 

“interconnectedness” have significantly exacerbated the severity, geographic distribution, and societal 

ramifications of those outages (Roege et al. 2014). For example, the impact of power outages on the 

manufacturing industry involves losses of output volume and quality, inventory and asset damage, and 

production delays and inconveniences (U.S. Department of Energy, 2013). A survey conducted by the 

Brazilian National Confederation of Industry (CNI- National Confederation of Industry, 2016) showed that 

electrical energy is the primary power source of nearly 80% of factories located in Brazil, of which 67% 

stated that power supply interruptions significantly increase production costs. For instance, in 2012, a set of 

factories in Midwest Brazil suffered a total loss of US$ 20 million due to disruptions in the power supply 

(Correio Brazilience 2012). Therefore, it is a necessity to develop techniques for assessing the impact of 

disruption events in a comprehensive and systematic way, which will enable the resilience enhancement of 

these events (Espinoza et al. 2016).  

In the context, this chapter proposes an optimization model by using mixed linear programming to make 

decisions related to investments in the design of resilient electric power grid to industrial clients. We 
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minimize the overall expected cost as objective function, which includes the cost of pre-event decisions, the 

expected cost of the financial impact of disruptive scenarios on the network and the expected cost of post-

event actions. To that end, we evaluate how costs associated with investments in the design phase may reduce 

both the impact and the recovery efforts over time, given the occurrence of an undesired event. 

3.2 Scope of the analysis 

In this section, we first describe the main characteristics of an electrical grid to contextualize the scope of 

our analysis. A power network can be made up of the following subsystems: transmission, subtransmission 

and distribution (Kundur, 1994). The transmission interconnects all the major generating units and main load 

centers in the system. It forms the backbone of the electric power network and operates at the highest voltage 

levels (typically 230 kV or above). On the other hand, the subtransmission system provides power at 

relatively lower voltages (e.g., 69 kV or 13.8 kV), connecting the electric grid from the transmission level 

substations to distribution substations. In some cases, large industrial clients can be directly supplied by a 

subtransmission system. Finally, distribution is the last stage of the power transmission system for 

customers, usually connected to lower voltage levels, such as 69 kV, 13.8 kV, 220V and 110V. 

The bulk power system is generally designed in accordance with the N-1 security criterion, requiring the 

system is able to bear the loss of one major component (mainly transmission lines and power transformers) 

without interrupting the electricity supply (Hokstad et al. 2012). Another example is an electric distribution 

system in which the feeders are designed in loop (Willis, 1997). As the name implies, the feeders form a 

loop through the service area and returns to the original point. By placing switches in strategic locations, the 

utility can supply power to the customer from either direction. Moreover, typical distribution networks 

usually have interconnected feeders that can be automatically and/or manually switched on in case of 

failures. If one source of power fails, switches are thrown, and power can be fed to customers from the other 

source. This type of configuration is more expensive because more switches and conductors are required to 

provide flexibility to the system. 

In contrast, the electric power supply to industrial clients is usually provided by a single connection line and 

a step-down substation, and failures in this infrastructure can cause power supply interruptions and therefore 

additional production costs. Given this fact, the scope of our analysis is highlighted in Figure 3.1, 

representing our focus on the user perspective. Thus, disruptions of the system are analysed in terms of 

interruptions of the electricity supply to industrial clients that, for instance, serve critical societal functions. 
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Figure 3.1 Representation of the electrical connections for industrial clients (C1, …, Ci);  

Figure 3.1 contains a set of Subtransmission Substations (SSs) denoted by SSj, which are responsible for 

ensuring energy supply to industrial clients, denoted by Ci, where i > n2 + 1 >…n1 > 1, through 

subtransmission lines. Under normal conditions, each client has a demand Qi, which is served by a specific 

SSj (primary assignment) with capacity Kj to accommodate the demand assigned to it. The electrical 

connection of industrial clients shown in Figure 3.1 could be generalized to other configurations. For 

example, it could involve a different number of SSs or industrial clients, which would only require modifying 

the allocation of clients per SS.  

In this manner, the proposed model provides some alternatives to improve the resilience of the electric power 

supply for industrial plants, including normally open backup power lines, active parallel lines, purchasing 

of diesel generators, or increases in restorative capacity. However, the implementation of these 

reinforcements, in practice, depends on the costs of expanding the electrical connection and the expenditures 

arising from interruptions to the energy supply. Thus, based on some input data regarding a set of industrial 

plants, the solution proposed by the model indicates whether these alternatives should be implemented. 

3.3 Modelling Assumptions 

This thesis proposes an optimization model to minimize the total expected costs by means of implementing 

resilience-based alternatives that are useful in case of stoppages of the supply of electrical energy to 

industrial clients due to disruptions in the configuration analysed in Figure 3.1. 
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The uncertainty of potential disruptions makes the use of scenarios important. The stochastic characteristic 

of the proposed model relies on considering different disruptive scenarios (each with its own probability of 

occurrence) in the electrical connections to industrial clients; the probabilities of occurrence are used in the 

calculation of the total expected cost. The similar stochastic characteristic for the proposed model can be 

seen in Cardoso, (2015); Mari et al. (2014) and Turnquist & Vugrin, (2013). 

However, there are myriad events that might cause disruptions in the electricity supply, for example, climate 

change (Bartos et al. 2016), natural disasters (Ghanem et al. 2016; Espinoza et al. 2016), physical attacks 

(Nezamoddini et al. 2017) and terrorism (Mendonça & Wallace 2015). Nevertheless, this paper does not 

intend to consider every possible contingency or to model the causes of the disruptive events that affect 

power supplies to industrial clients. To evaluate different scenarios of disruption, we consider the following 

assumptions for the power grid in Figure 3.1.  

• SSj can be affected by an event that will partially or fully impact its capacity, thereby influencing 

the supply of the set of customers Ci assigned to it. This capacity will be recovered over time in 

accordance with the recovery rate of the system; 

• The subtransmission line between SSj and a connected Ci can be affected, thus halting only the 

supply of Ci; 

• Multiple failures can occur, affecting SS1 and SS2, two subtransmission lines, SSj and a 

subtransmission line not connected to it, or a subtransmission line and its corresponding SSj. 

Thus, we consider the system might be exposed to internal or external factors that may affect its nodes and/or 

links. Each scenario represents how an interruption may occur and has an associated probability. In this 

context, the possibilities for design decisions related to IDR are: 

• Investment in absorptive capacity: expanding the capacity of each SSj; 

• Investment in adaptive capacity: defining backup connections (supplying client Ci’s demand, for 

example, by the closest SSj); or establishing redundant lines between Ci and the corresponding 

SSj; or allocating diesel generators to keep Ci at least in partial operation; 

• Investment in restorative capacity: improving the SS recovery rate. The restoration capacity 

includes the number of repair crews, available equipment and replacement components.   

It is important to mention that this thesis aims to increase the resilience of the system, and it is out of scope 

determining who is responsible for carrying out the investment: either the managers of the energy supply or 

the industrial clients. Indeed, the idea is to design a power supply system for industry clients with optimal 
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cost, resulting in a win-win partnership, co-responsibility, and knowledge sharing to make the entire chain 

more competitive. 

Thus, the method will determine the optimal allocation of resources to minimize the overall expected costs 

for designing this power grid, assuming that an undesirable scenario could occur. In addition to the post-

event response (i.e., efforts to restore the supply of energy to industrial plants), we consider pre-event 

decisions related to investments in improving resilience, which can be accomplished by including absorptive, 

adaptive and restorative capacities (Francis & Bekera 2014; Turnquist & Vugrin 2013; Levalle & Nof 2015) 

in the phase of designing the electrical connections to industrial customers. The idea is to incorporate the 

concept of resilience into the design of the system, thereby considering different possibilities of IDR and the 

respective IS and PCR.  

This problem gives rise to an MILP approach, for which the parameters and variables are described in Tables 

3.1 and 3.2, respectively. The binary variables are set so that 1 indicates the existence or operation of some 

SS or link of the system and 0 otherwise. 

Table 3.1 -Description of the parameters 

Parameter Description Range or 

unit 
𝑇 Time period Hours 

𝑑 Deadline to restore system to nominal performance threshold Hours 

 Recovery rate of subtransmission lines Line/hour 

𝑄𝑖 Demand of Ci per period MVA/hour 

𝑟 Recovery rate of SS capacity MVA/hour 

𝐺 Capacity of diesel generator MVA 

𝐾𝑗 Initial capacity of SSj MVA 

𝑝𝑐 Probability of occurrence of scenario c [0,1] 
𝑉𝑗𝑐 Portion of SSj capacity affected in scenario c [0,1] 

𝐹𝑖𝑗𝑐 Occurrence of an event in the subtransmission line between SSj and Ci in 

scenario c 
0 or 1 

𝐿𝑖𝑗 Predefined connections between SSj and Ci 0 or 1 

𝛼𝑗 Cost of adding Kj units to SSj capacity $ 

𝜆𝑖𝑗 Cost of establishing a backup (SSj for Ci) $ 

𝜑𝑖𝑗 Cost of adding a redundant line between SSj and Ci $ 

𝛾 Cost of siting a generator $ 

𝜇 Cost of adding resources to accelerate SS recovery $ 

𝜌 Cost of supplying demand  $ 

𝜃 Cost of supplying demand by means of a generator $ 

𝜙𝑖 Penalty for unmet demand of Ci $ 

𝛿𝑖 Penalty for unmet demand of Ci after a deadline d $ 

𝜔𝑖 Penalty for unmet demand of Ci when Ci has diesel generators $ 

𝜋 Cost of recovering SS capacity  $ 

𝜎 Cost of recovering subtransmission lines $ 
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Parameter Description Range or 

unit 
𝑀 Budget available for costs incurred for IDR and PCR $ 

 
 

Table 3.2 - Description of the variables 

Variable Description Range or unit 

𝐴𝑖 Addition of Kj units to the capacity of SSj units 

𝑊 Additional resources for SS recovery MVA/period 

𝑛𝑖 Quantity of generators added to Ci units 

𝐵𝑖𝑗 Backup connection between Ci and SSj 0 or 1 

𝐻𝑖𝑗 Redundant line between Ci and SSj 0 or 1 

𝑔𝑖𝑡𝑐 Operation of Ci generators in period t for scenario c 0 or 1 

𝑆𝑖𝑗𝑡𝑐 Operation of the subtransmission system from SSj to Ci in period t for 

scenario c 
0 or 1 

𝑂𝑖𝑗𝑡𝑐 Operation of the subtransmission line between SSj and Ci in period t for 

scenario c 
0 or 1 

𝑈𝑖𝑡𝑐 Capacity of SSj in period t for scenario c MVA 

𝑅𝑗𝑡𝑐 Capacity of SSj recovered in period t for scenario c MVA 

𝑥𝑖𝑗𝑡𝑐 Portion of Ci demand supplied by SSj in period t for scenario c [0,1] 
𝑧𝑖𝑡𝑐 Portion of Ci demand supplied by generators in period t for scenario c [0,1] 

𝐷𝑖𝑡𝑐 Portion of Ci demand supplied in period t for scenario c [0,1] 

𝑦𝑖𝑡𝑐 Portion of Ci demand that is not met in period t for scenario c when Ci does 

not have a generator 
[0,1] 

ℎ𝑖𝑡𝑐 Portion of Ci demand that is not met in period t for scenario c when this 

client uses its diesel generator 
[0,1] 

𝑁𝑖𝑡𝑐 Portion of Ci demand that is not met in period t for scenario c [0,1] 

𝑎𝑖𝑗𝑡𝑐 Portion of the subtransmission line between SSj and Ci recovered in period t 

of scenario c 
[0,1] 

3.4 Design Phase: Pre-event Costs 

The alternatives available for pre-event investments are translated into costs defined as IDR, and they are 

divided into three types of capacity: adaptation, absorption and restoration. Considering possible system 

interruptions and according to the adaptive concepts presented in (Francis & Bekera 2014; Turnquist & 

Vugrin 2013), the possibilities for increasing the adaptive capacity are the following. 

• To establish a backup line between SSk and Ci so that the impact on the industrial plant operation will 

be reduced. Indeed, if SSj is affected, its demand can be supplied by SSk, with k ≠ j. Determining 

which SSk would work as a backup for Ci will be based on the cost to establish the new connection. 

Backup lines are deemed to operate in hot standby mode. 
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• To build a redundant line that shares a load with the main line (active parallel) to ensure the supply 

of Ci from its corresponding SSj. The model will determine the existence (or not) of this line so that, 

if the main line is affected, the redundant one will be able to support the full load. 

• To invest in diesel generators to keep the plant at partial or full operation until the main power supply 

returns. Failures on demand of the diesel generators are not considered here. 

Investments in absorptive capacity can be made by expanding the capacity of SSj so that the system will be 

able to better respond to an event that could affect subtransmission substations or links. The opportunity to 

invest and expand the capacity of each SSk allows the system to more easily bear the loss of one or more SSj 

(k ≠ j) because the system will have additional capacity to manage the additional demand of SSj, and 

consequently will continue to meet demands (partially or totally). The investments in restorative capacity 

will be spent on deploying additional maintenance crews and buying spares to increase the recovery rate. 

Considering the available alternatives and using the parameters and variables mentioned in tables 3.2 and 

3.4, the IDR can be expressed as shown in Equation (3.1): 

 

𝐼𝐷𝑅 =  ∑ 𝛼𝑗𝐴𝑗𝑗 +  𝛾 ∑ 𝑛𝑖𝑖 +  ∑ ∑ 𝜆𝑖𝑗𝐵𝑖𝑗𝑗𝑖 +  𝜑 ∑ ∑ 𝐻𝑖𝑗𝑗𝑖 +  𝜇𝑤  (3.1) 

The first part of Equation (1) corresponds to investing in absorption, which is the possibility of adding 

capacity to each SSj. The next three terms correspond to possible investments in adaptive capacity: installing 

generators for Ci, establishing backups for clients so their demands can be met by another SS (besides their 

primary supplier) and the possibility of setting a redundant line between Ci and SSj, respectively. The last 

term corresponds to the investment in increasing the recovery rate.  

3.5 Post-event Costs 

Post-event expected costs are associated with the financial impact of IS caused by a disruptive scenario on 

system performance and the efforts (PCR) to restore the system supply capacity. In this thesis consider that 

the losses of industries are a step-change function of the demand that is not met in period t for scenario c and 

for each type of client. However, there is a monetary penalty for each unmet MVA.  

It also considers that industrial plants manufacture products, which have different added values; thus, the 

penalty depends on the specific industrial sector. Therefore, IS can be specified as the impact on the demand 

supply, and it is expressed in Equation (3.2): 
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𝐼𝑆 =  ∑ 𝑝𝑐𝑐 [𝜌 ∑ 𝑄𝑖 ∑ ∑ 𝑥𝑖𝑗𝑡𝑐𝑡𝑗𝑖 +  𝜃 ∑ 𝑄𝑖 ∑ 𝑧𝑖𝑡𝑐𝑡𝑖 + ∑ 𝜙𝑖𝑄𝑖 ∑ 𝑦𝑖𝑡𝑐𝑡𝑖 + ∑ 𝛿𝑖𝑄𝑖𝑖 ∑ 𝑦𝑖𝜏𝑐
𝑇
𝜏=𝑑 +

∑ 𝜔𝑖𝑄𝑖 ∑ ℎ𝑖𝑡𝑐𝑡𝑖 + ∑ 𝛿𝑖𝑄𝑖𝑖 ∑ ℎ𝑖𝜏𝑐
𝑇
𝜏=𝑑 ], (3.2) 

 

where 𝑝𝑐 is the probability of each scenario c, which corresponds to a disturbing event that causes an 

interruption to the energy supply. The first and second terms of Equation (3.2) represent the cost of supplying 

power from SSj and diesel generators, respectively. The third part reflects the penalty incurred because the 

main SS did not meet some portion of clients’ demands. The fourth portion represents an additional fee for 

unmet demand beyond deadline d, which is usually established in the contract signed with the client. In this 

manner, if the supplier fails to meet such a time limit, there will be additional costs in addition to the existing 

penalties. Despite its importance, this penalty structure is not considered in the other works mentioned above.  

The fifth term corresponds to the penalty for not meeting some portion of clients’ demands when these 

clients have diesel generators. However, as before, there is a possible sixth term, which is an additional fee 

that is charged if the non-supply of power extends beyond d. We considered the fifth and sixth parts of 

Equation (3.2) because of the specific characteristics of the production processes. Usually, industries suffer 

great losses due to failures in the power supply even if interruptions are short. Equipment such as reactors, 

homogenizers, blast furnaces and other critical items do not simply return to their operational state when the 

power supply is re-established, related to the inputs not being processed by the equipment (work-in-process) 

due to interruptions in the supply of power, which cannot usually be made to the full specifications set. This 

failure indicates that there has been a lack of control in the process. Moreover, even when the energy returns, 

there are production losses until the process returns to the default condition.  

Therefore, the possibility of using a diesel generator can reduce the impacts caused by this problem and keep 

the equipment in operation to remove, for example, the material in process until power is restored, thus 

reducing the costs incurred by this interruption. In this case, the plant would be penalized only with the loss 

of production during this period and would no longer suffer losses due to the time spent on re-establishing 

process control. Therefore, the penalties that might be associated with the lead time when the power supply 

is cut and the generators are started will not be considered. Note that this approximation is reasonable given 

that the generators are equipped with automatic start, which usually takes 10 to 30 seconds to become 

operational.  

PCR, in turn, includes the costs associated with the resources required to recover the system due to 

disturbances, i.e., the cost of restoring the performance of the system after an interruption 𝑐. The expected 

PCR is shown in Equation (3.3): 
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𝑃𝐶𝑅 =  ∑ 𝑝𝑐𝑐 [𝜋 ∑ ∑ 𝑅𝑗𝑡𝑐𝑡𝑗 + 𝜎 ∑ ∑ ∑ 𝑎𝑖𝑗𝑡𝑐𝑡𝑗𝑖 ], (3.3) 

where the first part indicates the costs associated with the use of recovery resources, if the recovery actions 

are directed to SSj, and the second term represents the cost associated with recovering a subtransmission line 

between SSj and Ci. 

3.6 Formulation of the Model 

The stochastic optimization model proposed is defined as an MILP problem with an objective function that 

combines the cost of investing in resilience-based actions in the network design phase (IDR) and the 

expected costs related to system performance and recovery (IS plus PCR). Thus, the objective function 

(Equation (3.4)) is the sum of IDR, IS and PCR, which are presented in Equations (3.1), (3.2) and (3.3), 

respectively. 

 

Min IDR + IS + PCR =  ∑ αjAjj +  γ ∑ nii + ∑ ∑ λijBijji +  φ ∑ ∑ Hijji +  μw +

 ∑ pcc [ρ ∑ Qi ∑ ∑ xijtctji +  θ ∑ Qi ∑ zitcti + ∑ ϕiQi ∑ yitcti + ∑ δiQii ∑ yiτc
T
τ=d +

∑ ωiQi ∑ hitcti + ∑ δiQii ∑ hiτc
T
τ=d +  π ∑ ∑ Rjtctj + σ ∑ ∑ ∑ aijtctji ]  (3.4) 

subject to: 

∑ Bijj  ≤ 1          ∀i,  (3.5) 

Ditc =  ∑ xijtcj +  zitc         ∀i, t, c  (3.6) 

Sijtc − xijtc  ≥ 0          ∀i, j, t, c (3.7) 

gitc −  zitc ≥ 0          ∀i, t, c (3.8) 

zitc Qi ≤  ni G          ∀i, t, c (3.9) 

∑ xijtci Qi  ≤  Ujtc          ∀j, t, c  (3.10) 

Nitc =  yitc + hitc      ∀i, t, c (3.11)  

gitc −  hitc  ≥ 0      ∀i, t, c (3.12) 

gitc +  yitc  ≤ 1      ∀i, t, c (3.13) 

Ditc +  Nitc = 1          ∀i, t, c (3.14) 

gitc  ≤  ni          ∀i, t, c (3.15) 
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Sijtc ≤  LijHij +  Oijtc + Bij              ∀i, j, t, c (3.16) 

Ujtc − Kj Sijtc  ≥ 0                            ∀i, j, t, c (3.17) 

Oijtc ≤ (1 − Fijc)Lij + ∑ aijτc
t−1
τ=1           ∀i, j, t, c  (3.18) 

OijTc ≤ Lij        ∀ i, j, c (3.19) 

OijTc = Lij        ∀ i, j, c (3.20) 

Ujtc =  (1 −  Vjc)(Kj + KjAj) +  ∑ Rjτc
t−1
τ=1   ∀j, t, c  (3.21) 

Ujtc  ≤  Kj +  KjAj          ∀j, t, c (3.22) 

UjTc =  Kj +  KjAj          ∀j, c (3.23) 

∑ Rjtcj  ≤  r +  w      ∀t, c  (3.24) 

∑ ∑ aijtcji ≤ ℓ            ∀t, c  (3.25) 

α ∑ Ajj +  γ ∑ nii +  ∑ ∑ λijBijji +  φ ∑ ∑ Hijji +  μw +  ∑ pcc [π ∑ ∑ Rjtctj + σ ∑ ∑ ∑ aijtctji ] ≤

M  (3.26) 

Aj, ni, w, Rjtc, Ujtc  ≥ 0 (3.27) 

xijtc, zitc, yitc, hitc, aijtc, Ditc, Mitc, Oijtc ≥ 0 (3.28) 

Bij, Hij, Sijtc, gitc  ∈   {0,1} (3.29) 

Constraint 3.5 is related to the limit of connections per client, assuming that each client can have only one 

backup connection at most. We assume this limit because (i) the cost of implementation of a backup power 

line is higher than that of a diesel generator; (ii) multiple backup lines would require increased space, which 

is not always feasible, mainly near urban areas; and (iii) finally, provided that the substation is operational, 

a single line would provide all of the energy needed to supply the industrial plant, while it would require 

multiple generators to have the same outcome.  

Constraints 3.6-3.14 are associated with meeting the clients’ demand. The demand of each client can be 

served by the corresponding SSj and its diesel generators (Constraint 3.6) so that the demand of Ci can only 

be served by SSj, assuming this link exists and is operational (Constraint 3.7). Therefore, the portion of Ci 

demand served by generators can only exist if generators have been installed in Ci (Constraint 3.8), and this 

amount cannot exceed the capacity of the generators (Constraint 3.9). In addition, the whole demand that 
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SSj is expected to meet cannot exceed its capacity (Constraint 3.10). Constraint 11 represents the portion of 

Ci demand that is not supplied in each period, which can occur if either SS or the generators do not have 

sufficient capacity. If Ci generator is activated, information represented by gitc, the unmet portion of Ci 

demand is represented by hitc (Constraint 3.12); otherwise, it will be represented by yitc (Constraint 3.13). 

Consequently, the portion of each client’s demand that is met and the portion that is not met in each period 

are complementary factors (Constraint 3.14). 

Generators can only be activated if the subtransmission system for Ci has been affected, given that the 

investment in their acquisition has been made (Constraint 3.15). In this context, the predefined 

subtransmission system operates in series such that, if any component that provides energy for Ci is affected, 

the power does not reach Ci. Therefore, Constraints 3.16 and 3.17 correspond to the connection between SSj 

and Ci in accordance with the operational condition of each component of this system. The connection is 

operational if and only if at least Kj of the capacity of SSj has been recovered (Constraint 3.17). Moreover, 

Constraint 16 represents the operation of the connection between SSj and Ci, considering that the following: 

i. If Ci is primarily connected to SSj, this connection might or might not be operational (Oijtc); 

ii. If Ci is primarily connected to SSj, this connection could be ensured by a redundant line (Hij); 

and 

iii. If Ci is not primarily connected to SSj, SSj might be its backup (Bij). 

Constraints 3.18-3.20 register the state (whether operational or not) of the subtransmission line between SSj 

and Ci, given that it is a primary connection (Constraint 3.19), and this line is subject to the occurrence of 

events that can affect its performance. A portion of each line (aijtc) can be recovered in each period and for a 

given scenario using the recovery rate  and these lines must be fully recovered over time (Constraints 3.18 

and 20) using the available resources (Constraint 3.25), which are shared among all subtransmission lines. 

Constraints 3.21-3.23 represent the determination of the capacity of SSj, given that an event affects its 

operation, and its capacity must be recovered over time. Immediately after the occurrence of the disruptive 

event, SSj has reduced capacity or no capacity at all. Thus, restoration efforts can be undertaken by increasing 

capacity by r (the recovery rate parameter in MVA/hour). This process continues, with recovery efforts being 

made hourly so that the entire capacity is recovered until T is reached. In the model, the SS recovery rate 

can be increased using additional resources (variable w), which should be devoted to hiring maintenance 

crews and buying spares.  

Constraint 3.24 corresponds to the total resources available to recover SS and must be shared among all SSs. 

In addition, the costs associated with IDR and PCR cannot exceed the limit M, as shown in Constraint 3.26, 
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which represents financial constraints. Constraints 3.27-3.29 specify the variation ranges of the variables as 

being non-negative integer, non-negative real and binary, respectively. 

We demonstrate the applicability of the proposed model. Our aim is to evaluate how the strategies for 

improving resilience vary for a wide range of scenarios and for different investment alternatives , assessing 

the corresponding impacts over time. In addition, the example is useful for discussing the validation and 

verification of the model. 

3.7 Application Example  

3.7.1 Description of the Problem 

This section discusses the application of the proposed model to an example involving an EPSN with 

industrial clients from the chemical/petrochemical, food and manufacturing sectors. As mentioned above, 

this paper does not aim to consider every possible contingency over the whole power supply network. In 

fact, our aim is to improve the resilience of the power supply with regard to industrial clients’ connections 

to the electrical power grid. This situation is of practical application for medium to large industries that have 

very high costs (and thus very low tolerance) when interruptions to the power supply occur in their 

production plants. Therefore, alternatives that improve the resilience of industrial clients’ connections to the 

EPSN are provided. Figure 3.2 shows the original power grid that will be addressed in this section. In Figure 

3.2, clients are represented according to their sectors. 

 

Figure 3.2 Representation of power grid supply to industrial clients 
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In this example, the power grid consists of 3 substations that together supply 150 MVA (Table 3.3) to 

industrial customers such that the capacity of each SS is given by the total demand assigned to it. Having 

both the added value of the products and the eventual loss of production as criteria, the 

chemical/petrochemical, manufacturing and food industries are ranked in this order, according to their level 

of importance to local economic activity. Thus, the energy supplier incurs different penalties for demand not 

supplied because of a disruption in the performance of the system. 

Table 3.3 - Client data 

Client Industrial segment Demand (MVA) 

Pk, with k = 1, 2, 3, 4. Petrochemical/chemical 15 

Mm, with m = 1, 2, 3, 4, 5. Manufacturing 10 

Fr, with r = 1, 2, 3, 4, 5, 6, 7, 8. Food 5 

 

To show how disruptions in the network can affect the investments necessary to achieve an optimal, resilient 

design, we defined a set of scenarios and their associated probability pc. These scenarios are used to specify 

the loss of SS supply capacity and the loss of subtransmission lines between SS and its clients.  

As discussed above, interruptions can occur due to internal or external factors, including various natural 

factors. For example, in Brazil, atmospheric discharges and torrential rains, combined with falling trees, can 

interrupt the power supply to industrial clients. According to (Shukla et al. 2011), the disaster probabilities 

are difficult to quantify. However, for this example, we are not concerned with identifying and analysing 

specific causes of events that could affect the network. In fact, our aim is to quantify several ways by which 

the system might become unavailable.  

In this context, the proposed method for defining pc considers the observation of the network as a random 

experiment, for which three possible situations can arise: (i) no occurrence of a disruptive event; (ii) a single 

failure; or (iii) multiple failures. A single failure is understood as the loss of a node (SS) or a link 

(subtransmission lines). Multiple failures can be observed in (i) simultaneous failures: SS1 and SS2, two 

subtransmission lines and SS and a subtransmission line not connected to it; or (ii) cascading failures since 

failures in both the line and its respective SS are a sort of cascading failure and cannot be considered 

independent events. Thus, the costs related to their recovery should also be considered. Observations of three 

or more simultaneous failures are not considered because they are very unlikely to occur. 

We also consider simultaneous failures in both SS1 and SS2 because they are assumed to be connected to the 

same step-down Transmission Substation (TS). Thus, this failure could be related to a common cause, such 

as the loss of TS supply. However, we do not consider other joint failures of SS because they are very 
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unlikely to occur, especially if they are connected to independent TSs. Table 3.4 shows that each element of 

the sample space () is related to a scenario, which represents how an undesired event can impact the supply 

of electricity to industrial clients; all scenarios are assumed to be mutually exclusive.  

Furthermore, scenario {S1S2} (related to a TS failure) is considered less likely than joint failures {SjLPk}, 

{SjLMm} and {SjLFr} with k, m and r connected to j, which in turn are considered as probable as {Sj}. 

Additionally, {Sj} is less likely than scenarios {LPk}, {LMm} and {LFr}, which represent the disconnection 

of single lines. Such an assumption is based on the practice that a TS is designed with a more robust bus or 

better switching schemes, compared to an SS (McDonald, 2007).  

Given this assumption, we can establish relationships among the probabilities of occurrences of these 

scenarios. More specifically, if x is the probability of the scenario {S1S2}, then P({SjLPk}) = P({SjLMm}) = 

P({SjLFr}) = P({Sj}) = c1x for k, m and r connected to j; and P({LPj}) = P({LMm}) = P({LFr}) = c2x, where 

c1 and c2 are positive constants such that c1  <  c2. 

Moreover, the probabilities of the scenarios with simultaneous failures (except {S1S2}, {SjLPk}, {SjLMm} 

and {SjLFr} with k, m and r connected to j and with the corresponding probabilities defined above) are given 

by multiplying the probabilities of their respective single scenarios. For example, if c2x is the probability of 

{LPk}, then the probability of {LPkLPqk} is c2
2x2. In this manner, Table 3.4 shows the scenarios and their 

respective probabilities. Note that scenarios {S1}, {S2} and {S3} are equally likely. Thus, scenario type {Sj}, 

j = 1, 2, 3, represents three different scenarios with similar definitions and likelihoods (each corresponding 

to the failure of one SS). The number of similar scenarios is also indicated in Table 3.4, which shows a total 

of 209 possible scenarios. Then, the event “no occurrence of a disruptive event (no failure)” is considered 

complementary to the other failure scenarios. 

Table 3.4 - Description of the scenarios 

Type of  

event 

Description pc Number of 

similar 

scenarios  

Single failures 

{Sj}: failure of the j-th SS with j = 1, 2, 3; c1x 3 

{LPk} failure of the line between the k-th 

chemical/petrochemical and the corresponding SS; 
c2x 4 

{LMm}: failure of the line between the m-th 

manufacturer and its SS 
c2x 

5 

{LFr}: failure of the line between the r-th food and 

its SS. 
c2x 

8 

Multiple 

failures 

{S1S2} x 1 

{SjLPk}, k not connected to j c1c2x2 8 

{SjLMm}, m not connected to j c1c2x2 10 

{SjLFr}, r not connected to j c1c2x2 16 

{SjLPk}, k connected to j c1x 4 
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Type of  

event 

Description pc Number of 

similar 

scenarios  {SjLMm}, m connected to j c1x 5 

{SjLFr}, r connected to j c1x 8 

{LPkLPqk} c2
2x2 6 

{LMmLMqm} c2
2x2 10 

{LFrLFqr} c2
2x2 28 

{LPkLMm} c2
2x2 20 

{LPkLFr} c2
2x2 32 

{LMmLFr} c2
2x2 40 

{No failure} No occurrence of a disruptive event 1 
− x(1 + 20c1

+ 17c2)
− x2(34c1c2

+ 136c2
2) 

1 

 

The consequences of each of these scenarios are different; for example, scenarios {LP1LP2} and {LP2LP3} 

are equally likely, but their effects can differ because P1 and P2 are connected to SS1, whereas P3 is connected 

to SS2. Thus, all scenarios should be incorporated into the optimization problem.  

In this context, we analysed four cases, for each of which all of the scenarios shown in Table 3.4 were 

considered. The different cases were defined based on the probability of the scenario {no failure}. Thus, x 

is estimated by the definition of the probability of {no failure} and using the property that the sum of 

probabilities of all scenarios equals 1. For the positive constants c1 and c2 with 0 < c1 < c2, the computation 

of x is always possible. Therefore, having obtained x, the probability of the other scenarios can be estimated 

using the relations given in Table 3.4. 

We cannot predict exactly which adverse events will occur or when and with what intensity. Nevertheless, 

given that our approach anticipates the resilience pre- and post-event actions that should be considered, using 

the probabilities of disruptive events is a method to represent their intrinsically uncertain nature, and doing 

so also permits the calculation of the expected cost, which is a measure that can guide how resources should 

be allocated to enhance resilience. In the next section, we present examples of applying the proposed model, 

which was solved using IBM ILOG CPLEX software, which applies the exact Branch-and-Cut technique 

(Hillier and Lieberman) (Hillier & Lieberman 2015). 
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3.7.2 Results and Discussion 

The probability of scenario {no failure} and the corresponding x for each of the 4 cases are shown in Table 

3.5. Note that we consider P{No failure} = 0.9, 0.7, 0.3, 0.0 for cases 1, 2, 3 and 4, respectively. In other 

words, we assume that the probability of a disruptive event is low in case 1. Next, we increase this probability 

in cases 2 and 3. Finally, we analyse in case 4 a situation in which a disruption will occur for certain. These 

cases were defined to evaluate the behaviour of the system over T = 8 hours and the response of the model 

to different possibilities. However, we considered c1 = 10 and c2 = 100, i.e., the failure of a subtransmission 

line is ten times more likely than the failure of an SS or of a line and its respective SS.  

Table 3.5 - Probability of cases 1, 2, 3 and 4 

 Probabilities of Cases 
 1 2 3 4 

{No failure} 0.9 0.7 0.3 0 

x 5.10E-05 1.43E-04 3.02E-04 4.05E-04 

 

The results presented in this section were obtained disregarding financial resource constraints. In fact, we 

disregard Constraint 26 to achieve an optimal resilience strategy with unconstrained financial resources. We 

also perform sensitivity analysis to assess the impact of limited budgets on the optimal resilience strategy 

and hence on system performance (see next section). The parameter values for the proposed model shown 

in Table 3.6 are fictitious for the sake of confidentiality. However, they were carefully estimated to represent 

reality. 

Table 3.6 - Values of the parameters used for all 4 cases 

Parameter Description Value  

𝛼𝑗 Cost of adding Kj MVA of capacity to SS $ 3 million 

𝜆𝑖𝑗 Cost of establishing backup (SSj for Ci) k$ 480  

𝜑 Cost of adding a redundant subtransmission line (SSj for Ci) k$ 350  

𝛾 Cost of installing a diesel generator k$ 260  

𝜇 Cost of adding resources to accelerate SS recovery k$ 100 /MVA 

𝜌 Cost of meeting the demand for supply (from the main power 

supply system) 

$ 0.5 /MVA 

𝜃 Cost of meeting the demand for supply from the diesel 

generator 

$ 0.8 /MVA 
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Parameter Description Value  

𝜙𝑖 Penalty for unmet demand of Ci k$ 200 / MVA 

(chemical/petrochemical), 

k$ 180 / MVA 

(manufacturing), k$ 160 / 

MVA (food) 

𝛿𝑖  Penalty for unmet demand of Ci after a certain deadline d k$ 200 / MVA 

(chemical/petrochemical), 

k$ 180 / MVA 

(manufacturing), k$ 160 / 

MVA (food) 

𝜔𝑖 Penalty for unmet demand of Ci , when Ci has generators k$ 100 /MVA 

(chemical/petrochemical), 

k$ 80 /MVA 

(manufacturing), k$ 60 

/MVA (food) 

𝜋 Cost of recovering SS capacity  k$ 15 /MVA 

𝜎 Cost of recovering subtransmission lines (between SSj and  Ci) k$ 50  

𝑇 Time period 8 hours 

𝑑 Deadline for return of subtransmission to normal operation 3 hours 

𝑟 Recovery rate for SS capacities  20 MVA/hour 

𝐺 Capacity of a diesel generator 2 MVA 

 Recovery rate for subtransmission lines 0.5 line/hour 

 

The comparison between the results in terms of IS, IDR and PCR obtained for each of the four cases is 

shown in Figure 4, where the total expected costs are presented. Figure 4 illustrates that in case 1, which has 

a low probability of occurrence of any disruptive event, no investments in resilience are necessary. In fact, 

one can state that, when the probability of scenario {no failure} is high, the model does not suggest 

investments in resilience.  

Moreover, in analysing Figure 3.3, we observe that, as the probability of scenario {no failure} decreases, the 

total expected cost considerably increases. In fact, comparing cases 1 and 2, the expected total cost was 

approximately 5 times greater in case 2 than in case 1. Additionally, compared to case 1, the total expected 

cost of case 4 increased drastically from $ 716,370 to $ 5,049,530. This significant increase is justified by 

the increases in IS, PCR and IDR values as the probability of {no failure} decreases. For case 1, the highest 

penalties (related to unmet demand) are observed in scenarios {LP1}, {LP2}, {LP3} and {LP4}, comprising 

17% of the total expected penalty. For case 2, there was an investment of $ 1,400,000 in IDR. 
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Figure 3.3.Total expected costs of the 4 different cases. 

Figure 3.4 shows for case 3 that an active parallel subtransmission line (dashed line) should be added for 

client P4, which is the highest penalty related to unmet demand (chemical/petrochemical sector), as shown 

in Table 3.6. The investment in this resilience-based alternative assures that P4 has its demand fully met 

when its main subtransmission line is affected. Consequently, the penalty for the {LP4} scenario decreased 

from $86,000 in case 2 to zero in case 3. In addition, this design feature, while maintaining the operation of 

the system, is also used to share the workload with the main subtransmission line. It is important to note that, 

in practice, the design and installation of redundant lines connected to the same SS consider a distance 

criterion to avoid one tower falling onto an adjacent line. 
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Figure 3.4 - Resilience enhancement actions defined for case 3 

In case 4, the solution of the model suggested active parallel subtransmission lines for clients P1 and P2 

(Figure 3.5). Comparing cases 3 and 4, after investing in redundant subtransmission lines, the penalty related 

to unmet demand for the {LP1} and {LP2} scenarios decreased from k$ 362 in case 3 to zero in case 4. As 

in case 2, there was also a recommendation to invest in restorative capacity for cases 3 and 4, causing an 

increase in the SS recovery rate of 5 MVA/hour; i.e., it increased from 20 MVA/hour to 25 MVA/hour. 
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Figure 3.5 - Resilience enhancement actions defined for case 4 

Investment in active parallel subtransmission lines and in restorative capacity seems reasonable since the 

probability of each scenario remains low, although the probability that an event could impact a 

subtransmission line is considered to be ten times greater than the probability of an event that could affect 

an SS. However, although the cost of adding a single 2 MVA diesel generators is approximately 25% less, 

this action would not be as efficient as the parallel active subtransmission line in cases 3 and 4 because it 

would not enable the system to supply the client’s entire demand. For example, a petrochemical client would 

have to invest in eight generators to ensure that its demand supply was met during disruption, and the cost 

of this action would be approximately six times greater than that of investing in an active parallel 

subtransmission line. 

3.7.3 Assessment of the Constraint on Financial Resources  

In this section, we evaluate the impact of budget constraints on defining the optimal resilience-based strategy 

and hence on system performance. In the proposed model, the financial constraint is represented by the 

parameter M, which limits the investments in resilience enhancement actions (pre-event actions) and the 

costs associated with post-event recovery (see Constraint 26). Thus, we analyse case 4 for three different 

new possibilities: (i) M = $ 1 million; (ii) M = $ 0.5 million; and (iii) no investment in actions to enhance 

resilience (“without IDR”); the results are shown in Figure 3.6. 
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Figure 3.6-Total expected costs for case 4 for different constraints on financial resources. 

As shown in Figure 3.6, as M decreases, the cost associated with the impact on the system (IS) increases. 

For example, from the “without restriction” case to M = $ 1 million and M= $ 0.5 million, IS increases by 

approximately 15% and 44%, respectively. Consequently, the total expected cost also increases. Therefore, 

the reduction in M directly impacts the decisions on drawing up a resilience-based strategy and hence on the 

system performance to meet demands.  

Note also that PCR does not change in the situations presented in Figure 3.6 because (i) all of them represent 

the same case 4, with all 209 scenarios and their respective likelihoods, and (ii) the system must fully recover 

over the time period of 8 hours (see Constraints 20 and 23). Thus, it is important to note that increasing IDR 

does not indicate that the PCR will be reduced because a certain total amount of resources will always be 

needed to perform the recovery actions associated with the disruptive event, regardless of IDR. 

3.7.4 Further Assessments: Evaluating Specific Scenarios 

It is also important to emphasize the flexibility that the model offers to propose solutions for a given 

particular event. Thus, we analyse two different scenarios to identify the optimal resilience-based strategy 

considering the occurrence of (i) failure of SS1 (scenario {S1}) and (ii) simultaneous failure of SS1SS2 

(scenario {S1S2}). We believe that these disruptions are related to severe consequences; thus, we analyse the 

resilience actions that are appropriate for each of them. To this end, for each scenario, we consider its 

probability of occurrence equalling 1; thus, the other events in Table 3.4 will not occur. 
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3.7.4.1 Assessment of Failure of Substation SS1 

We evaluate this scenario for 4 investment possibilities. First, we disregard financial resource constraints 

(the “without restriction” case). Next, we consider M = $ 4 and M = $ 2 million. Finally, we consider the 

worst-case situation with no investments in resilience enhancement actions (the “without IDR” case); the 

results are shown in Figure 3.7. 

 

Figure 3.7-Total expected costs for scenario {S1} for different constraints on financial resources. 

As in the previous case, Figure 3.7 also shows that, when M is reduced, the costs associated with the system 

impact IS, and expected total cost increases, affecting the decisions in the elaboration of the strategy based 

on resilience. Thus, the expected total cost for the "without IDR" case is almost six times greater than that 

for the "without restriction" case.  

Figure 3.8 shows the investments that should be made to enhance power grid resilience for each budget. 

These investments are assessed according to the performance of the SS recovery and the extent to which the 

supply of electricity meets the client’s demand, which is directly affected by the resilience actions undertaken 

during the downtime of the corresponding SS. We evaluate the impacts on clients P1 and F1, considering the 

portion of their demands supplied in scenario {S1}; these clients were selected to evaluate performance in 

supplying power to the industrial sector. The recovery speed of SS1 and the costs associated with PCR and 

IS are also illustrated in Figure 3.8. 



53 
 

 

 

 

Figure 3.8 - Assessment of different budgets for scenario {S1} over time.  

Figure 3.8 (a, c, e, g) show the capacity recovery of SS1 and post-interruption cost recovery (PCR) for M = 

“Without restriction”, $ 4 and $ 2 million and “without IDR”. Figure 3.8 (b, d, f, h) present the supply portion 

that meets the demand of customers P1 and F1 and IS for M = “Without restriction”, $ 4 and $ 2 million and 

“without IDR”. In addition, for each M, there is a list of resilience strategies employed on the left side of 
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each figure. According to Figure 3.8, higher budgets (M) emphasize investment to minimize the portion of 

unmet demand, while lower budgets show increased IS. In contrast to the previous cases, note that, when we 

consider the unavailability of SS1, the investments for the “without restriction” case yield improvement in 

the absorptive and adaptive capacities. Indeed, we can see in Figure 9 that the model suggests that (i) 6 

backups connections should be established (P1, P2, F1, F2, F3 and F4) so that the clients can be supplied by 

SS3 and (ii) additional capacity should be added to SS3 so that it will be able to supply the additional demand.  

Because SS1 clients would be fully supplied by SS3 (Figure 3.8b), recovery of SS1 would only be completed 

in T = 8 h (Figure 3.8a), as Constraint 23 requires. However, note that in Figure 3.8c (M = $4 million) the 

recovery of SS1 is faster (T = 3 h) than in Figure 3.8a because, in this case, we would have neither the 

additional capacity of SS3 nor the backup connections. We can also see in Figure 3.8 that, as the financial 

resources decrease, the investment focuses on improving restorative and adaptive capacities so that 

generators can be allocated to help addressing the most important clients, while SS1 is still in the process of 

recovering.  

3.7.4.2 Assessment of the Simultaneous Failure of Substations SS1 and SS2  

Although the probability of scenario {S1S2} is usually very low, if it occurs, it would have great impact on 

the performance of the system. Figure 3.9 shows the total cost of this event for different budget constraints. 

First, as in the previous section, we do not consider financial resource constraints (the “without restriction” 

case), and then M = $ 10, 7 and 3 million. Finally, we also consider the worst-case situation with no 

investments in resilience enhancement actions (the “without IDR” case).  

 

Figure 3.9 - Total expected cost for scenario {S1S2} and for different financial resource constraints. 
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Therefore, the optimal strategy for scenario {S1S2} has a total cost of $13,500,600: approximately 88% less 

than the case in which no investments in resilience are made. In fact, IS represents 16% of total expected 

costs for the “without restriction” case and 98% for the “without IDR” case. This finding emphasizes that 

investments in pre-event actions to enhance resilience (including investments in adaptive, absorptive and 

restorative capacities) have the potential to enable better allocation of the available financial resources to 

improve the efficiency of the response if disruptive events occur. 

Note that, as explained for case 4, PCR remains constant for all situations presented in Figure 3.9 since all 

of them represent the occurrence of scenario {S1S2}, and the system must fully recover over the time period 

of 8 hours (see Constraints 20 and 23). However, PCR is much greater for scenario {S1S2} than for case 4 

because we would then have more severe consequences. 

For the “without restriction” case, according to Figure 3.10, the resilience actions are (i) acquiring 17 diesel 

generators; (ii) establishing 4 backup connections from SS3 to P1, P2, P3 and P4 (Figure 3.11); (iii) investing 

in additional capacity to SS3 (50 MVA) to accommodate the backup connections; and (iv) investing in 

increasing the recovery rate (w = 5 MVA/hour). Note that (i) and (ii) are related to adaptive actions, whereas 

(iii) and (iv) concern absorption and restoration actions, respectively.  
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Figure 3.10 - Assessment of different budgets for scenario {S1S2} over time.  
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Figure 3.10 (a, c, e, g, i) show the capacity recovery of SS1 and PCR for M = “without restriction”, $ 10, 7 

and 3 million and “without IDR”. Figures 3.10 (b, d, f, h, j) present the supply portion that meets the demand 

of customers P1, M1 and F1 and the cost of IS for M = “without restriction”, $ 10, 7 and 3 million and 

“without IDR”. In addition, for each M, there is a list of resilience strategies employed on the left side of 

each figure. 

 

 

Figure 3.11 - Resilience enhancement actions defined for scenario {S1S2} for M = “without restriction” 

Although the investment in the recovery rate seems small, note that each SS can only be stated as operational 

when at least Kj of its capacity (50 MVA in this case) is fully recovered. Thus, this investment allows for 

the recovery of SS1 to be completed in d = 3 hours (see Figure 3.10a). Although SS1 and SS2 have the same 

demand in MVA, note that SS2 has more clients, which are ranked higher in importance than SS1 (see Figure 

3.2). Thus, the penalties would be higher if the clients of SS2 are not rapidly supplied. In this manner, the 

model prioritizes pre-event (adaptive and absorptive) actions to enhance resilience for SS2 clients, and it 

determines recovery strategies for SS1. 
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However, the sum of the clients’ demands would be allocated as backup to SS3 (P1, P2, P3, P4), exceeding its 

additional capacity by 10 MVA and thus indirectly affecting the supply of its own clients. In fact, clients P1, 

P2, P3, and P4 are prioritized because they have greater importance than the clients of SS3. To reduce this 

consequence, generators could be added to some clients of SS3, such as F7 and F8. In this case, after an 

interruption, because P1 is connected to SS3 by means of a backup connection, its demand is not affected 

(Figure 3.10 b).  

Table 3.7 shows the allocation of generators to each client; for the “without restriction” case, we also show 

the portion of their demand supplied by generators during SS1 and SS2 downtime. For instance, even during 

SS2 downtime, M1 will have 100% of its demand supplied because 5 diesel generators have been added 

(Figure 3.10b). In contrast, only 1 generator was allocated to F1. Because the supply capacity of the diesel 

generator is 2 MVA/hour, the supply of 40% of its demand is ensured until SS1 is fully recovered by period 

d = 3 (Figure 3.10b). Therefore, this allocation actually reduces the overall expected penalties incurred due 

to unmet demand. Thus, by adopting this strategy, only 5% of the total demand originally allocated to SS3 

would not be supplied during concomitant SS1 and SS2 downtime. 

Table 3.7 - Allocation of diesel generators for scenario {S1S2}. Financial constraints (in millions). 

Client Without restriction $ 10 $ 7 $ 4 $ 3 Without IDR 

No. of generators 
Portion of demand 

supplied (%) 

No. of generators 

P1 - - 1 1 1 - - 

P2 - - - 1 - - - 

F1 1 40 1 1 - - - 

F2 1 40 1 1 - - - 

F3 1 40 1 1 - - - 

F4 1 40 1 1 - - - 

P3 - - - 1 1 1 - 

P4 - - - 1 1 1 - 

M1 5 100 - 1 1 1 - 

F5 3 100 3 - - - - 

F6 3 100 2 - - - - 

F7 1 40 1 - - - - 

F8 1 40 - - - - - 
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Client Without restriction $ 10 $ 7 $ 4 $ 3 Without IDR 

No. of generators 
Portion of demand 

supplied (%) 

No. of generators 

M2 - - - - - - - 

M3 - - - - - - - 

M4 - - - - - - - 

M5 - - - - - - - 

Total 17 - 11 9 4 3 - 

 

For M = $10 million, the number of diesel generators was reduced by 35% (Table 3.7), and the 4 backup 

connections were now from SS3 to P2, P3, P4 and M1. In the “without restriction” case, the backup allocation 

to SS3 affected the supply of its own clients (F7 and F8), which no longer occurs. However, in this case, 

supplying the demand of P1 is greatly affected, as shown in Figure 3.10b, since only one generator is 

allocated to P1 (Table 3.7). For client M1, because it has SS3 by means of a backup connection, its demand 

is not affected. Conversely, F1 remains with one generator, thus ensuring the supply of 40% of its demand 

until SS1 is fully recovered. In this case, three clients of SS2 are also connected through backup to SS3 (P3, 

P4 and M1). Thus, to minimize the impact, SS1 should be recovered before SS2 (Figure 3.10c), and the 

demand of their clients (P1 being one of them) is supplied normally from period 3 (Figure 3.10d). 

For M = $ 7 million, the total number of diesel generators decreases to 9, and the resilience strategy adopted 

for this case is more reactive because the highest amount of investment is directed to accelerating the 

recovery rate, which increases from 20 MVA/hour to 50 MVA/hour (w = 30 MVA/hour). Thus, the resources 

for SS recovery are shared between SS1 and SS2 so that both return to normal operation by the deadline d = 

3 (Figure 3.10 e). Another important point is that the fastest recovery speed was achieved for M = $ 7 million, 

even when compared to the case “without restriction” and M = $ 10 million. 

For M = $ 3 million, investment is still made in (i) accelerating the recovery rate (w = 5 MVA/hour) and (ii) 

one generator each for clients P3, P4 and M1. The recovery speed is similar to what was presented for the 

“without restriction” case and M = $ 10 million, the recovery of SS1 being completed in three hours and that 

of SS2 in five hours (Figure 3.10g). However, the results for the supply meeting the demand in this case are 

worse than those presented for M = $ 10 million (Figure 3.10b). Figure 3.10i and Figure 3.10j also illustrate 

the worst situations (“without IDR” case), in which no resilience enhancement actions are implemented 

during the design phase.  
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Briefly, we can note that when the budget reduces, the cheapest strategy is to invest in (i) acquiring diesel 

generators and (ii) accelerating recovery. As mentioned before, using generators can reduce the impact of 

an event on the system because doing so can keep critical, industrial equipment in minimal operating 

condition until the power supply returns to normal. For petrochemical clients, for example, the generators 

can be used to remove the work in process and to allow the system to restart without any further delays when 

the power supply returns. 

However, Figure 3.12 illustrates the portion of the overall demand supplied in each situation, considering 

the performance for all clients over the 8-hour period. Figure 3.12 indicates that actions towards 

incorporating the absorption and adaptation capacities enable the response to be more effective than actions 

that focus on recovery. Moreover, our model reflects that it is economically unfeasible to ensure that 100% 

of the demand will be met should disruptive events occur. However, we can minimize the impact on the 

system (IS) by adopting pre-event resilient actions. 

 

Figure 3.12 - Assessment of the total demand for supply met over the period of 8 hours for different financial resource 

constraints. 

3.8 Final Comments  

We have developed a stochastic optimization model using Mixed-Integer Linear Programming to support 

decisions related to investments in the design of resilient power grids serving to industrial clients. We 

minimize the overall expected cost by means of an optimal strategy involving pre- and post-event actions. 

The model was validated by two types of sensitivity analysis. First, we increased the probability of the 

occurrence of an undesired event. From the results, we can see that our model indicated that the decision 

maker should also increase investments to design a more resilient system. In contrast, by reducing the 

probability of occurrence, no investment should be made. Thereafter, we also evaluated how the model 

behaves for different budgets. As expected, as we decreased the budget, the IS increased rapidly, indicating 



61 
 

 

 

the usefulness of investing in resilience during the design phase. Note that the proposed model also indicated 

how the resources should be spent for each case. 

The results obtained enabled the optimal solution to be analysed in terms of IS, IDR and PCR. Moreover, 

detailed IDR actions (e.g., redundant or backup lines, diesel generators) are real-world suggestions to 

improve the resilience of EPSN related to industrial clients. Thus, the impacts on EPSN clients due to 

disruptions were reduced, as evidenced in the sensitivity analysis, in which IS increased by reducing the 

investments in resilience strategies. This analysis also showed that the lower the investment in IDR, the 

greater the level of unmet demand, which can yield financial losses for the entire system. 

Another important contribution is to draw attention to a paradigm change in how a power grid is viewed: the 

traditional stance is that the grid is system centred on electric power utilities. However, the new paradigm is 

that the grid is not only system centred but is also a customer-focused system, which is the reasoning 

followed by other authors, such as (Kwasinski 2016). Therefore, our model includes strategies that can be 

applied both to electric power grids and by industrial customers. For example, such strategies include 

considering redundant or backup systems and diesel generators, thus allowing customers to make decisions 

about managing electric power, which has a strong influence on enhancing the overall resilience of the entire 

grid.  
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4 DETERMINATION OF DESIGN CHARACTERISTICS FOR A RESILIENT LOGISTIC 

NETWORK CONSIDERING CLIENT SERVICE LEVEL 

A part of this chapter was based on a research article published at the European Conference on Safety and 

Reliability (ESREL) (Diniz et al. 2015).  In addition, in the date or publication of the thesis, this chapter was 

considered as an original research article for publication in the journal PLOS ONE. 

4.1 Problem statement 

In the context of intense transformations driven by technological advances, commercial and financial 

integrations and increasingly global competition, efficient logistics has become a decisive factor to ensure 

the survivability of organizations. This recognition derives from the potential of logistics to aggregate values 

of both time and space for consumers and to create competitive advantages for organizations. The 

internationalization of industries increasingly extends the importance of logistics, as logistic costs represent 

a significant share of the total cost of goods. It is through the logistics processes that the inputs arrive to the 

factories and the products are distributed to the consumers. 

Moreover, for the current competitive market, it is not enough for companies to have attractive products, 

competitive prices and creative ads, because the trend of customers requiring new levels of services is 

increasing. In addition to quality and performance, customers have been requiring the products to be in the 

desired location and at the planned time (Christopher & Peck 2004).  

In this scenario, companies tend to be increasingly demanded in terms of the level of resilience they 

encounter after an unwanted event. According to Francis et al. (Francis & Bekera 2014), the term resilience 

is generally understood as an entity's ability to recover from an external disturbance such as threats, shocks, 

disasters, and anomalies. In this way, the system must successfully withstand, absorb and recover from the 

effects of these disturbing events, adapting to adversity or a change in normal operating conditions. In other 

words, resilience involves reducing both the magnitude and duration of the effects of an event under the 

normal performance of the system. 

As a way to prevent or minimize the impacts after the occurrence of disruption events, companies are seeking 

to develop a tool to support decisions related to investment in the resilience strategy. Thus, the objective of 

this chapter is to develop a quantitative model that determines the optimal allocation of financial resources 

to establish a resilience-based strategy in the context of the system design of a logistics network by 

minimizing the overall cost associated with the occurrence of disturbing events. 
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The design of a supply chain involves strategic decisions regarding the number and capacity of distribution 

centers, their locations and their mission, in order to meet the needs of final consumers. Thus, the decisions 

regarding the network design are long term and therefore need to anticipate the future levels of network 

activity (Klibi et al. 2010). To this end, it is necessary to evaluate the exposure of the network to disturbing 

events to promote improvements in system resilience by controlling some variables such as: inventory level, 

alternative supply sources, outsourced activities and level of information shared among network partners 

(Carvalho et al. 2012). 

According to the concepts previously presented, this work will evaluate the possibilities of investments in 

the design of a logistic network, with the purpose of improving network resilience and, with this, attendance 

of the service level specified to the client considering that the network is exposed to disruption events. The 

objective is to promote improvements to an existing network, according to the probability of occurrence of 

disruptive events in the network, making a trade-off between how much to invest in the network and the 

expected costs of the occurrence of these events. 

4.2 Supply Chain Disruptions  

A disruptive event is an event (or set of events) that causes a disturbance in the normal operating condition 

of a system (Francis & Bekera 2014), leading to a degradation of its performance. Uncertainty, inherent in 

the study of potential interruptions, makes consideration of scenarios important to cover a wide range of 

potential situations (Turnquist & Vugrin 2013), encouraging effective decisions regarding the allocation of 

investments with the porpoise of minimizing the degradation of system’s performance. 

Some authors have suggested that these rare but catastrophic disruptions are different from frequent, smaller 

disruptions and, thus, should be managed accordingly (Bradley 2014). Many companies use comprehensive 

scenario planning to model the dynamics and consequences of high-impact risks in order to recognize the 

direct effects as well as secondary effects of disruptions, such as the public fear and resource hoarding (Sheffi 

& Rice Jr. 2005). 

In the context of Supply Chain Management (SCM), in addition to the increase of supply chain disruptions’ 

frequency (Bradley 2014; Schmitt et al. 2015), the adoption of lean concepts into Supply Chain (SC) 

performance, like single sourcing and low inventories, achieved by close collaboration between customers 

and suppliers, leads to high vulnerability (Thun & Hoenig 2011; Ivanov, Dolgui, et al. 2016). Furthermore, 

with the increased specialization and geographical concentration of manufactures, disruptions in one node 

may affect the whole SC (Ivanov, Dolgui, et al. 2016). 



64 
 

 

 

According to Mensah & Merkuryev (2014), research shows that supply chains are at greater risks than their 

managers recognize. A research conducted by Thun & Hoenig (2011), comprising data of 67 companies in 

the automotive segment of German’s industry, where most of them are first tier suppliers, identified seven 

key developments driving supply chain risks: globalization, product variants, outsourcing, limited number 

of suppliers, focus on efficiency, central distribution and centralized production. 

Therefore, factors that increase the complexity of the SC and actions that seek to build up a lean SC, are the 

main drivers of supply chain risks. Risks can be identified at a focal firm, at its supply chain or at its supply 

chain environment (Heckmann et al. 2015; Yu & Goh 2014). In fact, new risks may emerge from the 

dependency and integration between companies in the supply chain (Thun & Hoenig, 2011). 

According to Tang & Nurmaya Musa (2011), supply chain risk should refer to events with low probability 

but substantial negative consequences to the entire network. In fact, disruptive events that affect one supply 

chain entity or process have the potential to interrupt the operations of other supply chain members either 

directly or indirectly (Kim et al. 2014; Ivanov, Dolgui, et al. 2016). For example, Ford and Toyota had to 

interrupt their production in US due the terrorist attacks of September 11, 2001  (Sheffi 2001), that caused 

significant delays in the delivery of parts coming from foreign countries. 

Naturally, after the terrorist attack of September 11, 2001, the U.S. government closed the country’s borders 

and shut down all incoming and outgoing flights, causing shipments across the U.S.-Canada border to be 

slowed for at least a week and, therefore, many auto assembly plants were intermittent closed (Bradley 

2014).  

According to Ivanov et al. (Ivanov, Dolgui, et al. 2016), the main types of reactions to disruptions for SC 

are parametrical and structural adaptation. Parametrical adaptation permits an adjustment on critical 

parameters, such as lead time and inventory, to stabilize and recover network performance, while structural 

adaptation considers rearrangements on network structure in order to maintain network performance for 

critical parameters. 

4.3 Model Description 

In this section, the formulation of the optimization model, using Mixed-Integer Linear Programming (MILP), 

to support decisions related to investments in the design of a resilient logistic network is presented. The 

objective is to minimize the total expected cost, taking into account the possible investments in network 

design and the costs associated with the impact of disruptive events on network performance. To this end, a 

set of scenarios will be defined, corresponding to the ways by which the network can be affected by external 

events, each with an associated probability. According to these scenarios, the model considers the 
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possibilities of investments in the network design (pre-event decisions) as a way to complement the efficient 

recovery post-event, determining the optimal allocation of resources and minimizing the total expected 

impact on the network. As discussed in chapter 2, investments in resilience during network’s design phase 

correspond to the promotion of absorption, adaptation and recovery capacities, with the aim of maintaining 

a specified network’s level of service. 

Distribution networks can be considered part of the broader definition of supply chains. Then, the SC 

network studied is represented by a set of distribution centers (DCs) denoted by j, who deliver a product to 

retail customers in the region, denoted by i (Figure 4.1). Initially, it is considered the existence of a pre-

project for the network in which each customer has a demand qi (uniform for all periods), which is attended 

by a specified DC (primary supplier), each with capacity Kj equal to the demand assigned to it. 

 

 

Figure 4.1 – Representation of the system considered 

Before the presentation of the mathematical model formulation, the notation of variables and parameters are 

described in Tables 4.1 and 4.2, respectively. 

Table 4.1 - Description of model’s variables 

Variable Description 

wj Additional capacity for DCj  

Ujts Available capacity in DCj in period t of the 

scenario c 

zij Back-up connections between DCs and clients 

R Additional resources for DC recovery 
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Variable Description 

amits 

and 

bnits 

Associated variables to Special Ordered Sets-Type 

2 (SOS2) 

xijts Portion of customer demand i served by DCj in 

period t of the scenario c 

yits Portion of customer demand i which is not served 

in period t of the scenario c 

Ojts Outsourced DCj capacity in period t of the scenario 

c 

rjts Resources used for recovery of DCj in period t of 

the scenario c 

Table 4.2 - Description of model’s parameters 

Parameter Description 

F Cost of adding 1 unit of capacity to DCs 

θij Cost for establishing a connection between DCj 

and client i 

h Cost to add resources for DC recovery 

ϕi Penalty for not serving the specified service level 

qi Customer i demand 

ρi Penalty for not serving the demand after the 

determined period 

η Cost of outsourcing 1 unit capacity 

Kj DCj  initial capacity 

μ Cost of using recovery resources 

ε Penalty for unrecovered capacity 

Lij 

Connections between pre-defined clients and DCs 

SL Service level 

l Deadline to restore system to nominal 

performance threshold 



67 
 

 

 

 

4.3.1 Pre-event investments alternatives  

The pre-event investment alternatives available for improvements on network design are defined as the 

Investments in Design for Resilience (IDR) and can be divided into investments in three types of capacity:  

• Absorption: investment in additional capacity for DCs. For instance, it includes: increasing the 

capacity of each DC to accommodate the loss of any of the others, expanding the physical space of 

each DC and expanding transporting capacity (e.g. increase the number of forklifts, lecturers, stored 

fuel, supervisors, invest in insurance). It is worth noting that the cost with idle capacity is expected 

to be lower than the prejudice of not meeting demand and losing customer credibility. 

• Adaptation: investment in back-up connections between DCs and customers. It can be archived by 

reconfiguration of connections between DCs and costumers for the movement of material through 

the definition of a back-up (secondary assignment), in case of primary assignment rendered non-

functional given the occurrence of a disruptive event. The definition of a back-up considers the costs 

associated with distance between DCs and costumers.  

• Restoration: investment in additional resources for DC’s recovery. It can be done through 

investments in resources that make the recovery faster given the occurrence of the event. 

Although inventory costs are high, maintaining inventories can be an important strategy to minimize the 

effects of demand fluctuations and problems with interruptions. In addition, according to (Ratick et al. 2008), 

there are enough facts in history that prove the benefits of using emergency backup, even with low 

probability of occurrence of disruptive events. Hence, the expected cost of IDR can be written as follows: 

 

hRzwF
i j

ij

j

j   =IDR                                                                                               (4.1) 

The first term of Equation 4.1 corresponds to investing in absorption, which is the possibility of adding 

capacity to each DCj. The next two terms correspond to possible investments in adaptive capacity 

(establishing backups for clients so their demands can be met by another DC) and investment in increasing 

the recovery rate, respectively. 
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4.3.2 Post-event Costs 

On the other hand, post-event costs associated with the occurrence of disruptive event involves both Impact 

on System Expenditures (ISE) and Post-interruption Cost of Recovery (PCR). The ISE is the cost associated 

with the impact of the event in the system due to performance degradation. It includes the impact on relevant 

performance metrics, such as additional cost for moving material through a degraded network, penalty costs 

related to the system's inability to meet the demand, extra penalty cost if the system is not able to meet 

demand within a given period. Therefore, ISE can be specified as the expected impact on the demand supply 

considering all possible scenarios, and it is expressed in Equation (4.2): 
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s UwKOyqpISE  3                                            (4.2) 

Because it is an expected cost, all terms need to be weighted by the probability of occurrence of each scenario 

( sp ). The first term corresponds to penalty for not reaching the specified Service Level (SL). The second 

term represents an additional fee for unmet demand beyond deadline 𝑙,  which is usually established in the 

contract signed with the client. In this manner, if the supplier fails to meet such a time limit, there will be 

additional costs. The third term reflects the cost of outsourcing part of the capacity of a DC. This work 

considers the possibility of manpower outsourcing as a way to compensate the capacity affected by some 

disruptive event. The fourth term represents penalty for incomplete recovery of DCs. That term penalizes 

the difference between the final restored capacity (K + w) and the currently available capacity in period t. 

PCR includes costs associated with the necessary resources to promote system recovery due to the event, 

i.e., to recover the damaged capacity after the disruption in each scenario. Therefore, the expected PCR is 

shown in Equation 4.3.  

][ 
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s rpPCR                                                                                                                                                          (4.3) 

4.3.3 Model formulation 

The stochastic optimization model proposed is defined as an MILP problem with an objective function that 

combines the cost of investing in resilience-based actions in the network design phase (IDR) and the 

expected costs related to system performance and recovery (ISE plus PCR). A set of scenarios is defined, 

each with an associated probability, exemplifying the ways by which the network can be affected by external 

events. Different cases are analyzed, varying the scenarios’ probabilities, in order to show how these changes 
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will affect the investment required to achieve an optimal resilient design. The objective function (Equation 

(4.4)) is the sum of IDR, ISE and PCR, which are presented in Equations (4.1), (4.2) and (4.3), respectively. 
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Constraints (4.5) and (4.6) indicate that the demand of client i can only be satisfied by Dj if both are 

connected, either through a primary connection (Lij) or a back up (zij). In addition, it is considered that each 

client can only have at most one DC as backup (constraint 4.7). 

For each client, the portion of their demand served and the unmet portion are complementary factors 

(constraint 4.8). According to constraint (4.9), the demand of all customers served by DCj cannot exceed its 

available capacity. We consider the possibility of manpower outsourcing as a way to compensate the capacity 

affected by some disturbing event (constraint 4.10).   

Constraints (4.11) to (4.13) are related to the available capacity of the DCs, which may be affected by an 

event in scenario s that will compromise a portion γjs of its capacity. This portion will be recovered over time 

(constraint 4.11) in a way that at the end of the time horizon considered the capacity of all DCs will be fully 

recovered (constraint 4.13). 

It is worth mentioning that the recovery efforts carried out in a given period are only available in the 

following period and that the resources used for recovery cannot exceed what is available for each period 

(constraint 4.14). According to constraint (4.12), recovery efforts cannot increase the capacity of DCs above 

their rated capacity (Kj + wj). In addition, investments are subjected to a specified amount of money 

(constraint 4.15). Constraints (4.22) and (4.23) refer to the boundary conditions of the problem.  

Constraints (4.16) to (4.21) are associated with the use of the Special Ordered Sets-Type 2 artifact to 

represent the penalty for not meeting customer demand. The function representing this penalty is a piecewise 

linear function, shown in Figure 4.2, where SL represents the desired Service Level. 

 

Figure 4.2 Representation of the penalty associated with non-compliance with demand 
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In this case, the following conditions are true: 

- a1 = 0, a2 = (1-SL) e a3 = 1; 

- b1 = 0, b2 = 0, b3 = ϕi. 

Thus, the portion of customer demand i that is not met (for each t of each s) and the penalty for that non-

fulfillment can be represented by a linear combination of an and bn respectively, where n = 1, 2 and 3, as 

shown in equations (4.24) and (4.25). 

332211 aaay itsitsitsits                                      (4.24) 

332211 bbbonpenalizati itsitsits                                  (4.25) 

In this context, constraints (4.16) to (4.21) are applied. In addition, it is worth noting that cnits  is a binary 

variable (constraint 4.22) and αmits ≥ 0 (constraint 4.23). 

4.4 Application Example 

In this section, we show the applicability of our proposed model for an application example, represented in 

Figure 4.3, in order to evaluate the impact of disruptions over time and how the strategies for improving 

resilience vary for a wide range of scenarios with different possibilities of investment. In this example, the 

system consists of 4 DCs that together supply 97061 units to 19 clients such that the capacity of each DC is 

given by the total demand assigned to it. The client demand, the capacity of each DC and the other 

parameters, are presented respectively in tables 4.3, 4.4, 4.5 and 4.6. 

 

Figure 4.3 - Representation of the network considered 
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Table 4.3 - Client demand 

Client Demand 
Primary 

supplier 

1 5.783 A 

2 8.075 A 

3 14.362 A 

4 13.570 B 

5 6.121 B 

6 2.258 B 

7 4.344 B 

8 3.730 C 

9 1.650 C 

10 2.271 C 

11 1.404 C 

12 10.429 C 

13 1.079 D 

14 2.484 D 

15 1.451 D 

16 5.249 D 

17 3.507 D 

18 8.844 D 

19 1.350 D 

Table 4.4 - DCs capacities 

DC Capacity 

A 28220 

B 26293 

C 19484 

D 23964 
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In order to show how disruptions may affect the investments necessary to achieve an optimal network 

resilient design, 3 cases were carried out, each composed of 11 scenarios representing the possible 

interruptions that the considered network may suffer due to external events. That is, each case includes all 

possible combinations of DC’s supply capacity loss, considering scenarios where only one DC fails and 

simultaneous failures of two DCs. Scenarios with simultaneous failure of three or more DCs were not 

considered because their probabilities are very low.  

First, we disregard constraint 4.15 in order to achieve an optimal resilience strategy with unconstrained 

financial resources. Then, we also carry out a sensitivity analysis to assess the impact of limited budgets on 

the optimal resilience strategy and, hence, on system performance. The probabilities associated with the 

cases are presented in Table 4.5 and the other parameters are shown in Table 4.6. The parameters values 

used in the application example are fictitious for the sake of confidentiality. However, they were carefully 

estimated to better represent reality. 

Table 4.5 - Description of the cases performed 

Scenarios 
Affected 

DCs  

Probabilities of the cases  

  1 2 3 

1 A 0.0175 0.175 0.117 

2 B 0.0175 0.175 0.117 

3 C 0.0175 0.175 0.233 

4 D 0.0175 0.175 0.233 

5 A, B 0.005 0.05 0.046 

6 A, C 0.005 0.05 0.046 

7 A, D 0.005 0.05 0.046 

8 B, C 0.005 0.05 0.046 

9 B, D 0.005 0.05 0.046 

10 C, D 0.005 0.05 0.093 

11 None  0.9 0 0 
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Table 4.6 - Parameters used in the application example 

Parameter Description 

F 100 (R$/un) 

θij 4000 (R$/ link) – except for primary 

connections 

h 400 (R$/un) 

ϕi 250 (R$/un of unmet demand) 

ρi 500 (R$/un) 

η 500 (R$/un) 

μ 50 (R$/un) 

ε 10 (R$/un) 

SL 80% 

The total cost of each of the cases is broken down into Figure 4.4 and the main results are discussed. As it 

can be seen in Figure 4.4, due to the low probability of the system being affected, no investment was made 

in the network design in case 1. In fact, one can state that when the probability of no DC being affected is 

high, the model will not suggest investments in resilience as an alternative. However, for some scenarios in 

which the simultaneous failure of two DCs occurred, the use of the outsourcing strategy for t ≥ l can be 

interesting. This action aims to meet part of the demand so that extra penalties are not incurred. In this case, 

some DCs cannot complete their recovery until the established deadline because of the lack of investment in 

recovery resources, for scenarios in which the combined failure of two DCs occurs, for example. 

 

Figure 4.4 - Total expected cost of each case 

Case 1 Case 2 Case 3

Investment - 5.784.500 5.834.900

Impact on System 2.270.290 10.641.200 9.521.400
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In case 2, due to the higher probability of occurrence of some event, R$ 5,784,500.00 was invested in 

system’s resilience. Figure 4.5 shows that the investments in additional capacity were made in a way that 

balanced the capacities of the DCs. In addition, the defined back-up connections are represented in Figure 

4.6. This investment also includes the addition of 5,162 units of resources directed to the recovery of the 

DCs. The addition of these features was sufficient to ensure that in all scenarios the DCs were recovered 

before the established deadline (l), and thus the desired customer service level is maintained. 

 

Figure 4.5 - Capacity of each DC according to case 2 

For this case, there was no need for outsourcing to meet demand. This may be due to two facts: first, recovery 

is completed on time in all scenarios; secondly, additional capacity and backups allow the level of customer 

service to be maintained at almost all periods.  
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Figure 4.6 - Representation of the backup links established by the case 2 

Case 3 presents a slightly higher probability that some event will affect C or D (or its combination) in relation 

to the other possibilities. In this way, A and B are expected to support them. In fact, as can be seen in Figure 

4.7, A and B serve as backup for 3 clients of D and 2 clients of C. In addition, client 3 also ends up having 

a backup connection (with B), which can be due to the fact that it is the customer with the greatest demand.  

 

Figure 4.7 - Representation of backup connections established by the case 3 

It was necessary to add 24,454 and 19,611 capacity units to A and B, respectively (Figure 4.8) so that the 

configuration shown in Figure 4.7 is feasible. In addition, 3,496 units of recovery resources were added. 

These features are not sufficient for recovery to be completed on time for all scenarios. In fact, the most 

critical scenario is 5 (A and B), in which the recovery is only completed in period 9. Therefore, the results 

of this case indeed favor C and D, which are able to maintain the service level to their customers.  
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Figure 4.8 - Capacity of each DC according to case 3 

4.4.1 Sensitivity analysis 

According to what has been analyzed, outsourcing investments seem to be more advantageous in situations 

where the probability of occurrence is small. Still, there is a need to evaluate the tradeoff between the amount 

for investment and the expected costs associated with the occurrence of disruptive events, specially when 

there are limited financial resources available. This evaluation is performed considering case 2 and a service 

level of 80%. In the “without restriction” case, the optimization model is applied without investment 

restriction, as presented in Section 4.4, and then the restriction is gradually imposed. Thus, we analyse four 

different new possibilities for case 2 (Figure 4.9): (i) M = $ 4 million; (ii) M = $ 2 million; (iii) M= $ 1 

million and (iv) no investment in actions to enhance resilience (“without IDR”). These situations may 

represent the impact on system resilience in times of economic crisis, with consequent cost cutting. 
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Figure 4.9 - Evaluation of investment in impact reduction 

Figure 4.9 demonstrates that pre-event actions may in fact promote greater agility for system recovery and 

greater cost effectiveness, especially when implemented in the network design phase. As evidence of this, 

the situation in which no investment is made has a total cost approximately 55% higher than the case in 

which the investment is not restricted. 

Figure 4.10 presents a comparative analysis between the model responses for different service levels, 

considering the situation “without restriction” for case 2. It is possible to observe that as the desired service 

level increases, there is a tendency to invest more in the design of the system, increasing total cost but 

decreasing the impact on the system. However, when the desired service level goes from 80% to 90%, the 

expected total cost is only increased by 3%. Similarly, from 90% to 95%, the expected total cost increases 

by only 1%. In this sense, there is a need to evaluate the benefit of providing a higher level of service, but 

also having to make more investments in the network, with the return that the company can have with the 

provision of a higher service quality. 
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Figure 4.10 - Total expected cost versus service level 

4.5 Final Comments 

Although efficient logistics operations have the potential to add time and space value to customers, as well 

as generating competitive advantages for companies, it represents a significant portion of final products cost. 

Due to the increasing demand of consumers regarding the service level, the impact of logistics on company 

performance, the benefits promoted by the efficiency of the logistics network and their vulnerability, 

companies are increasingly abandoning the reactive stance towards adopting a preventive approach for 

network management. 

In this context, the objective of this chapter was to propose a tool to help the decision makers to define an 

effective resilience strategy for the design of a logistics network, considering its exposure to external 

disruptive events. This strategy must take into account the probability of the events, the impact that these 

events would have on the performance of the network, guaranteeing the level of service specified to the 

client, and the minimization of the total costs. 

The results show that decisions taken during the design phase (a priori of the event) can in fact promote 

greater agility for response and for system recovery, greater absorption (minimizing consequences) of 

impacts and greater effectiveness in terms of costs. For a service level of 80%, as shown in Figure 4.9 for 

example, the total cost becomes 55% higher without the investment in resilience.  
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5 CONCLUSIONS AND FUTURE RESEARCH 

5.1 Concluding Remarks  

This thesis proposed a model to optimize costs in the design phase of infrastructure critical systems when 

resilience-based actions are considered. Our main goal was to provide a systematic way to determine how 

financial resources should be spent to design a resilient critical infrastructure. This tends to make a 

distribution system less susceptible to the impacts caused by the occurrence of a disruptive event and 

effectively reduce both the duration and the costs associated.   

The MILP model developed was able to incorporate (i) several disruptions with their respective probabilities 

of occurrence and (ii) worst-case scenarios, in which a specific event with severe consequences is considered. 

In the first situation, the probabilities of occurrence of each of the mutually exclusive scenarios are 

considered, and the output of the model is the optimal strategy involving pre- and post-event actions that 

minimize the expected total cost. 

We presented two application examples to illustrate the applicability of the proposed models. The first 

example, in the context of power grid, we use MILP to find the ideal infrastructure investments that improve 

the resilience of industrial facilities to disruptions in electric power supply. Four cases were analysed to 

explore the results for different situations regarding the probability of the occurrence of disruptive scenarios. 

We review resilience, critical infrastructure, and electric power literature establishing a need to better 

understand how different industrial clients are impacted by power grid disruptions. We demonstrate the 

efficacy of model via a technical case study that includes three kinds of industrial facilities linked to various 

power grid subtransmission stations. Ideal resilience investment strategies vary depending upon the total 

budget allotted to the system of industrial facilities. Figure 3.8 demonstrates that the number of backup 

generators and their location among industrial facilities changes with increasing budgets. Moreover, budgets 

increasing from $4 to $7M focus investments on increasing the rate of system recovery, where larger budgets 

emphasize increased substation capacities, redundant power lines, and a large number of backup diesel 

generators. As power grid users are the individuals that actually experience failures when blackouts occur, 

it is surprising that the majority of resilience literature overlook differences among customers and their 

needs. We provide a comprehensive overview of resilience literature as it applies to power grids justifying 

the need for studies that consider different industrial facilities. Finally, this work is significant by establishing 

a “view of the grid” from the perspective of an industrial client and focusing analysis on ways to improve 
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power availability outside the ownership and management of utilities. Therefore, this work provides a 

glimpse into the decisions electric power customers can make that influence resilience of the greater system. 

In the second example, in the context of the logistics network design and it minimizes the overall cost 

associated with the occurrence of disruption events. This example aimed at proposing a model to optimize 

the resilience of a distribution network by investing in absorption, adaptation and restoration capacities (pre-

event decisions) as a complement to effective post-event recovery strategies. The optimization model 

contains both continuous and discrete decision variables, then it is defined as a mixed-integer linear 

programming problem. Moreover, it involves scenarios whose occurrence is uncertain, and contains both 

variables determined before the scenario outcome is known and variables determined specifically in each 

scenario. 

Through the application example, one can evaluate how the strategies for improving resilience vary for a 

wide range of scenarios and with different investment options, evaluating the corresponding impact over 

time. In addition, the example presented was useful to discuss validation and verification of the model. In 

fact, we performed two types of analysis (by varying input values) to verify if the outcomes of our model 

are reasonable for different situations. First, we varied the probability of occurrence of an undesired event 

in Section “3.7.2 Results and discussion”. By increasing the value of this parameter, we can see from the 

results our model indicates that the decision maker should also increase the investments to design a more 

resilient system (see case 4). On the other hand, by reducing the probability of occurrence, no investment 

should be made (see case 1). Moreover, in Sections “3.7.3 Assessment of the constraint on financial 

resources” and “3.7.4 Further Assessments: Evaluating Specific Scenarios”, we also evaluate how our model 

behaves for different budgets. As it was expected, as we decrease the budget, the IS (Impact on System) 

increases rapidly, which indicates the usefulness in investing in resilience in the design phase of a plant; note 

that the proposed model also indicates how the resources should be spent for each case. 

In both cases, the results demonstrated that when optimally allocated, higher investments during the design 

phase have the potential to improve infrastructure performance and still reduce overall costs. In addition, 

this thesis demonstrated the important interactions between investments in design for resilience and impact 

on systems decisions, in which investments in design positively influenced system resilience by increasing 

absorption and adaption capacities, shortening recovery time and consequently reducing impact on systems 

after disruption events. For the application examples, each one of them had its specific conclusion sections 

(see sections 3.8 and 4.4). 
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5.2 Limitations  

We point out some limitations of this work. First, we focused on adopting the “resilience triangle” concept. 

However, other capacities or strategies for resilience do exist and they can be the focus of future research. 

For example, Lundberg & Johansson (2015) suggests considering the “learning” capacity to monitor and 

anticipate a disaster. Another possibility is to deem structural changes to increase the absorptive capacity of 

the system against shock (Raby et al. 2015).  

Moreover, we have considered the objective function as a weighted average of the costs of a set of possible 

interruption events, each with its respective probability. This could be thought of a limitation because, for 

example, low-probability high-consequence and high-probability low-consequence events are considered 

similar for resource allocation purposes. Despite that, the model allowed us to investigate specifically high-

consequence events such as the failure of SS1 and the simultaneous loss of SS1 and SS2. 

5.3 Future Research 

Finally, developing a multi-objective optimization model is an issue of our ongoing research. In fact, we aim 

at minimizing the total costs related to the three resilience capacities (absorption, adaptation and recovery), 

as well as maximizing the level of service to industrial customers. Other topics of ongoing research involve 

(i) analysing how local energy storage can contribute to rendering the electric service at an industrial plant 

more resilient to disruptions and (ii) for more fine-grained networks, although the proposed MILP is still 

valid, investigating a method that uses a metaheuristic solution (e.g., genetic algorithms) is an alternative 

due to the greater number of system nodes and links.  

Additionally, many works consider multiple sources of uncertainty, increasing problem complexity. In future 

research, we can consider uncertainty in other parameters, e.g.in demand, supply, delivery lead times, with 

demand uncertainty being the most common, justified by the often present market volatilities (Cardoso et al. 

2015). 
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