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Abstract: Humanitarian logistics is important for minimizing the damage after a disaster.
In Japan, based on past disasters, three empirical control strategies related to humanitarian
logistics have been proposed: two relief transportation strategies, and an information strategy
without ICT. This paper reveals the mathematical properties of these empirical strategies using
an analytic model with closed-form solution. Our approach is based on the stochastic optimal
control theory that has never been applied for analyzing humanitarian logistics. Specifically, we
formulate the inventory distribution problem considering demand uncertainty as a stochastic
optimal control problem with the objectives of minimizing inventory holding and handling costs.
Additionally, we consider information uncertainty after a disaster using the Bayesian updating
process. This process, by updating at different intervals among depots, models information
asynchrony caused by not using ICT. Finally, we analyze the optimal control strategy to
reveal the mathematical properties of three empirical strategies. Our results clarify that the
two empirical transportation strategies are effective. However, we suggest that in the empirical
information strategy without ICT the information paradox, wherein the system gets worse by
using information, may occur.
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1. INTRODUCTION

Given the frequency of major disasters around the world,
humanitarian logistics is garnering attention. For example,
the Cabinet Office in Japan (2018) reported that the
Kumamoto Earthquakes, which occurred on April 14 and
16, 2016 and had a maximum seismic intensity of 7,
caused 267 fatalities and destroyed, at least partially,
around 200,000 houses. Furthermore, the Fire and Disaster
Management Agency (2018) reported that over 200 of
them were disaster-related deaths that could have been
avoided by the timely arrival of suitable relief goods. The
aim of humanitarian logistics is to achieve the 6Rs: the
Right product, in the Right quantity, at the Right place,
at the Right time, at the Right cost, and in the Right
condition (Chomilier (2010)), thereby minimizing such
disaster-related deaths.

To ensure the success of humanitarian logistics, the Cab-
inet Office in Japan included two control strategies in
its disaster management plan: feedback control called the
pull-mode support, where relief goods are transported
in response to requests from shelters, and sequence con-
trol called the push-mode support, where their need is
⋆ This study was supported by JSPS Grant-in-aid (KAKENHI)
#16H02368.

predicted and they are transported before requests. In
the 2011 Great East Japan Earthquake all the strategies
were the pull-mode. However, affected local governments
usually take time to obtain accurate information after a
major disaster, so the push-mode has also been planned
and was implemented for the first time in the Kumamoto

Fig. 1. Number of evacuees in Kumamoto Prefecture and
number of meals supplied (Cabinet Office in Japan
(2017))
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inventories of node l at the shelter, Ii (t) be the amount
of inventories at depot node i, Sij (t) be the amount of
supplies per time (throughput) at link (i, j) ∈ A, and
Dl (t) be the amount of instantaneous subjective demand
of node l at the shelter. The cost functions are as follows:

TCINl
(t) = hl

(
fI

(
[INl (t)]

+
)
+ fB

(
[INl (t)]

−))

∀l ∈ N, (1)

hl =

{
h′
l − h′

l−1 l ∈ N+

h′
IN − h′

2 l ̸∈ N+ , h′
IN =

{
h′
3 IN3 (t) ≥ 0

b IN3 (t) < 0
(2)

∀l ∈ N,

TCIi (t) = h′
ifI

(
Ii (t)

)
∀i ∈ N+, (3)

TCSl
(t) =

∑
j∈Cl

cfS

(��TSlj (t) / |Pj | − Slj (t− rlj)
��)

∀l ∈ N+, (4)

TSlj (t) =




∑
i∈Cj

Sji (t) j ∈ N+

Dl (t) j ̸∈ N+
∀l ∈ N+, j ∈ Cl, (5)

dfX (x) /dx > 0 , d2fX (x) /dx2 > 0 ,

fX (x) , dfX (x) /dx are continuous ∀X ∈ [I, B, S] , (6)

where [·]+ represents max{0, ·} and [·]− represents−min{0,
·}. The parameters h′

l, b, c are, respectively, the weight of
the inventory holding cost at node l, the penalty cost for
falling short in supply, and the inventory handling cost.
The inventory holding cost of external supplies (l = 0) is
assumed to be 0, i.e. h0 = 0. Moreover, the penalty cost is
higher than the inventory holding cost, which increases as
the relief goods get closer to the shelter (h′

l < h′
l+1 < b).

Eq.(4) shows the changes in inventories and Eq.(5) shows
the outflows at destination j of depot node l.

Inventory Dynamics The dynamics of net inventory
INl (t), inventory Ii (t), and demand Dl (t) are as follows:

dIN l (t) =

[∑
i∈P3

Si3 (t− ri3)−Dl (t)

]
dt

INl (0) < 0 ∀l ∈ N,

(7)

Dl (t) dt = Dl (t) dt+DSD
l (t) dzl (t) ∀l ∈ N, (8)

IN3 (t) = IN2 (t) , (9)

İ1 (t) = 0, I1 (0) = 0, (10)

İ2 (t) = S12 (t− r12)− S23 (t) , I2 (0) ≥ 0, (11)

where zl (t) depicts the standard wiener process, andDl (t)
and DSD

l (t) depict parameters representing the mean
value and standard deviation of the subjective demand
Dl (t), respectively. The function Dl (t) dt follows the nor-
mal distribution N(Dl (t) dt, (D

SD
l (t))2dt). In section 2.2,

we will describe our information updating algorithm for
Dl (t). Eq.(7) shows the dynamics of the subjective net
stock inventory which consist of inflows into the shel-
ter and subjective demand. Moreover, we define IN3 (t),
which is the true value, as Eq.(9) for convenience. By
contrast, we assume that the information regarding depots
is perfect, letting the dynamics of inventory at depots
be Eqs.(10)(11). From Eq.(10), the amount of inventory

at the primary depot is explicitly 0 (i.e. I∗1 (t) = 0; the
primary depot is assumed to be the transfer center). For
simplicity, I2 (t) is referred to as I (t).

Optimization Problem Giving the initial condition of
Sij (t) to Eqs.(1)-(11), the inventory distribution problem
is formulated as a stochastic optimal control problem with
INl (t) and Ii (t) as state variables and Sij (t) as control
variables.

minV = E

∫ T

0

[∑
l∈N

TCINl
(t)

+
∑
i∈N+

TCIi (t) +
∑
l∈N+

TCSl
(t)

]
dt,

(12)

subject to Eqs.(1)− (11) and

Sij (t) = 0 ∀t ∈ [−rij , 0) , j ∈ Ci, i ∈ N+. (13)

In fact, the inventory Ii (t) and the throughput Sij (t) are
nonnegative but in this problem constraints are explicitly
not included, because numerical calculation is necessary
to solve the stochastic differential equations of Eq.(7).
Sij (t) is also constrained because not only shelters but
also depots have damages after a disaster. In this problem,
Sij (t) is constrained by minimizing changes in inventories
shown in Eq.(4). The integrand of Eq.(12) is narrowly
convex with respect to state variables and control variables
(because fX (x) gradually increases), and the differential
equations of Eqs.(7)-(11) are linear with respect to control
variables; therefore, the stochastic optimal control prob-
lem shown in Eqs.(1)-(13) satisfies Mangasarian Sufficient
Conditions (Mangasarian (1966)). Accordingly, the opti-
mal solution derived by the maximum principle, which is
the necessary condition for the extremum of the dynamic
optimization problem, is the only global optimal solution.

2.2 Information Updating Algorithm

Bayesian Updating This section shows our information
updating algorithm for information asynchrony. Consider-
ing information uncertainty after a disaster, accumulation
of much information should be modeled. The Bayesian
updating process can describe such a learning process.

First, the probability distribution (prior distribution) of
the mean value µl,n−1 (t) of the subjective demand dis-
tribution, which has already been updated n − 1 times
at time t, is updated to the posterior distribution using
the information regarding demand D̃ (t) from the shelter.
When each distribution is normal, the n-th updating of
the probability distribution (posterior distribution) of the
mean value µln (t) of the subjective demand distribution
is formulated as follows:

µln (t) =
(σ (t))

2

(σ (t))
2
+
(
µSD
l,n−1 (t)

)2µl,n−1 (t)

+

(
µSD
l,n−1 (t)

)2

(σ (t))
2
+
(
µSD
l,n−1 (t)

)2 D̃ (t) ,

(14)

(
µSD
ln (t)

)2
=

(σ (t))
2
(
µSD
l,n−1 (t)

)2

(σ (t))
2
+
(
µSD
l,n−1 (t)

)2 , (15)
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Earthquake. In these control strategies, the supply chain
network (SC network) involves two stages: the first stage
is transportation from primary depots outside the affected
area to secondary depots inside the affected area and the
second stage is transportation from secondary depots to
shelters, called last mile transportation. Although many
major earthquakes have occurred in Japan, Holgúın-Veras
et al. (2014) and The Committee of Infrastructure Plan-
ning and Management (2016) reported that secondary
depots, last mile transportation, and information flow
became bottlenecks because of the breakdown of depots,
road networks, and communication infrastructure. Fur-
thermore, these control strategies have not been effective
in past disasters. For example, Cabinet Office in Japan
(2017) reported that the peak number of evacuees and that
of meals supplied were different in Kumamoto earthquake
(Fig.1).

Based on past disasters, new empirical control strategies
were proposed. Higuchi (2017) and Ito et al. (2017) pro-
posed the push-mode, where relief goods are transported
directly from primary depots to shelters and secondary
depots are abandoned, based on the success cases of
Fukuoka City (2016) in the Kumamoto earthquake. Kubo
and Hashimoto (2016) showed that an offline transmission
system without ICT (e.g. the Kanban System using offline
cards to signal demand step by step) is effective for the
pull-mode. However, these strategies are empirical and
might not always be effective in future disasters, although
they may be effective in disasters that bear similarity to
past disasters. In order to propose control strategies for
future disasters, it is essential to develop an inventory
distribution model.

Conventional inventory distribution models can provide
optimal inventories and supplies using heuristic tech-
niques, because most of these problems belong to the NP
class. In terms of information, these are classified into
two types: the offline model (e.g. Beamon and Kotleba
(2006) and Barbarosoǧlu and Arda (2004)), where only
prior information is input, and the online model (e.g.
Jaillet et al. (2002) and Sheu (2010)), where information
collected after a disaster is input. The former corresponds
to the push-mode modeling, which calculates strategies in
advance based on predicted values. However, it is insuffi-
cient to evaluate only the push-mode because the control
strategy may switch from a push-mode to a pull-mode as
information becomes available. By contrast, in the latter,
it is possible to evaluate the pull-mode in terms of utilizing
requests from the shelters. Conventional online models
assume information sharing using ICT, which contradicts
the proposal by Kubo and Hashimoto (2016). When ICT
isn’t used, information asynchrony occurs in the SC net-
work and each depot has different subjective information.
Moreover, in such cases, Chen et al. (2000) revealed that
the bullwhip effect occurs, in that uncertainty increases
as information propagates upstream of the SC network.
After a disaster, there is a high possibility that the commu-
nication infrastructure is interrupted; therefore, modeling
information asynchrony can contribute to humanitarian
logistics.

Furthermore, after a disaster, where there is urgency and
a lack of information, conventional numerical methods
cannot be used effectively because they need much input
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Fig. 2. Supply chain network

and heuristic techniques which require a lot of time to
solve. Analytic models with closed-form solution that
can be solved easily without much information are the
practical alternative to numerical methods. This approach
can clarify the properties of solutions close to the global
optimum and contribute to the formulation of guidelines
for humanitarian logistics.

This research develops an inventory distribution model to
clarify the mathematical properties of the optimal control
strategy. Kawase et al. (2018) formulated this problem as
a deterministic optimal control problem, which is one of
the proposed analytic models. We make this formulation
stochastic based on Meng and Shen (2010) and analyze
the properties when considering demand uncertainty after
a disaster. Additionally, the Bayesian updating process
models a learning process of uncertain information after
a disaster. In this process, information asynchrony is dis-
cribed by updating at different intervals among depots.
This proposed model can analyze mathematical properties
of the new push- and pull-mode support including ”Direct
Supply,” ”Abolition of the secondary depot,” and ”Trans-
mission system without ICT.”

The rest of this paper is organized as follows: Section 2
develops our inventory distribution model consisting of
the stochastic optimal control problem and the informa-
tion updating algorithm. Section 3 analyzes the optimal
control strategy to clarify the properties of the push-mode
support. Section 4 provides numerical results and discusses
the pull-mode support. The paper ends with section 5, a
summary of key findings.

2. INVENTORY DISTRIBUTION MODEL

2.1 Stochastic Optimal Control Problem

Network and Object Function We assume that the SC
network is a directed graph G (N,A) with three nodes and
three links (Fig.2), where N is a set of nodes and A is a
set of arcs. Also, N+, N−, Ci and Pj indicate respective
sets of nodes with child nodes, nodes with parent nodes,
child nodes of node i ∈ N+, and parent nodes of node
j ∈ N−. In the SC network in Fig.2, N+ represents a set of
depots. Each node represents aggregated primary depots,
secondary depots and shelters in a general SC network.

We define the objective function as the summation of
TCINl

(t); the subjective net inventory holding cost of
node l ∈ N at the shelter, TCIi (t); the inventory holding
cost at depot node i ∈ N+ and TCSl

(t); the inventory
handling cost at the destination of node l ∈ N+ at time
t ∈ [0, T ]. Letting INl (t) be the amount of subjective net
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inventories of node l at the shelter, Ii (t) be the amount
of inventories at depot node i, Sij (t) be the amount of
supplies per time (throughput) at link (i, j) ∈ A, and
Dl (t) be the amount of instantaneous subjective demand
of node l at the shelter. The cost functions are as follows:

TCINl
(t) = hl

(
fI

(
[INl (t)]

+
)
+ fB

(
[INl (t)]

−))

∀l ∈ N, (1)

hl =

{
h′
l − h′

l−1 l ∈ N+

h′
IN − h′

2 l ̸∈ N+ , h′
IN =

{
h′
3 IN3 (t) ≥ 0

b IN3 (t) < 0
(2)

∀l ∈ N,

TCIi (t) = h′
ifI

(
Ii (t)

)
∀i ∈ N+, (3)

TCSl
(t) =

∑
j∈Cl

cfS

(��TSlj (t) / |Pj | − Slj (t− rlj)
��)

∀l ∈ N+, (4)

TSlj (t) =




∑
i∈Cj

Sji (t) j ∈ N+

Dl (t) j ̸∈ N+
∀l ∈ N+, j ∈ Cl, (5)

dfX (x) /dx > 0 , d2fX (x) /dx2 > 0 ,

fX (x) , dfX (x) /dx are continuous ∀X ∈ [I, B, S] , (6)

where [·]+ represents max{0, ·} and [·]− represents−min{0,
·}. The parameters h′

l, b, c are, respectively, the weight of
the inventory holding cost at node l, the penalty cost for
falling short in supply, and the inventory handling cost.
The inventory holding cost of external supplies (l = 0) is
assumed to be 0, i.e. h0 = 0. Moreover, the penalty cost is
higher than the inventory holding cost, which increases as
the relief goods get closer to the shelter (h′

l < h′
l+1 < b).

Eq.(4) shows the changes in inventories and Eq.(5) shows
the outflows at destination j of depot node l.

Inventory Dynamics The dynamics of net inventory
INl (t), inventory Ii (t), and demand Dl (t) are as follows:

dIN l (t) =

[∑
i∈P3

Si3 (t− ri3)−Dl (t)

]
dt

INl (0) < 0 ∀l ∈ N,

(7)

Dl (t) dt = Dl (t) dt+DSD
l (t) dzl (t) ∀l ∈ N, (8)

IN3 (t) = IN2 (t) , (9)

İ1 (t) = 0, I1 (0) = 0, (10)

İ2 (t) = S12 (t− r12)− S23 (t) , I2 (0) ≥ 0, (11)

where zl (t) depicts the standard wiener process, andDl (t)
and DSD

l (t) depict parameters representing the mean
value and standard deviation of the subjective demand
Dl (t), respectively. The function Dl (t) dt follows the nor-
mal distribution N(Dl (t) dt, (D

SD
l (t))2dt). In section 2.2,

we will describe our information updating algorithm for
Dl (t). Eq.(7) shows the dynamics of the subjective net
stock inventory which consist of inflows into the shel-
ter and subjective demand. Moreover, we define IN3 (t),
which is the true value, as Eq.(9) for convenience. By
contrast, we assume that the information regarding depots
is perfect, letting the dynamics of inventory at depots
be Eqs.(10)(11). From Eq.(10), the amount of inventory

at the primary depot is explicitly 0 (i.e. I∗1 (t) = 0; the
primary depot is assumed to be the transfer center). For
simplicity, I2 (t) is referred to as I (t).

Optimization Problem Giving the initial condition of
Sij (t) to Eqs.(1)-(11), the inventory distribution problem
is formulated as a stochastic optimal control problem with
INl (t) and Ii (t) as state variables and Sij (t) as control
variables.

minV = E

∫ T

0

[∑
l∈N

TCINl
(t)

+
∑
i∈N+

TCIi (t) +
∑
l∈N+

TCSl
(t)

]
dt,

(12)

subject to Eqs.(1)− (11) and

Sij (t) = 0 ∀t ∈ [−rij , 0) , j ∈ Ci, i ∈ N+. (13)

In fact, the inventory Ii (t) and the throughput Sij (t) are
nonnegative but in this problem constraints are explicitly
not included, because numerical calculation is necessary
to solve the stochastic differential equations of Eq.(7).
Sij (t) is also constrained because not only shelters but
also depots have damages after a disaster. In this problem,
Sij (t) is constrained by minimizing changes in inventories
shown in Eq.(4). The integrand of Eq.(12) is narrowly
convex with respect to state variables and control variables
(because fX (x) gradually increases), and the differential
equations of Eqs.(7)-(11) are linear with respect to control
variables; therefore, the stochastic optimal control prob-
lem shown in Eqs.(1)-(13) satisfies Mangasarian Sufficient
Conditions (Mangasarian (1966)). Accordingly, the opti-
mal solution derived by the maximum principle, which is
the necessary condition for the extremum of the dynamic
optimization problem, is the only global optimal solution.

2.2 Information Updating Algorithm

Bayesian Updating This section shows our information
updating algorithm for information asynchrony. Consider-
ing information uncertainty after a disaster, accumulation
of much information should be modeled. The Bayesian
updating process can describe such a learning process.

First, the probability distribution (prior distribution) of
the mean value µl,n−1 (t) of the subjective demand dis-
tribution, which has already been updated n − 1 times
at time t, is updated to the posterior distribution using
the information regarding demand D̃ (t) from the shelter.
When each distribution is normal, the n-th updating of
the probability distribution (posterior distribution) of the
mean value µln (t) of the subjective demand distribution
is formulated as follows:

µln (t) =
(σ (t))

2

(σ (t))
2
+
(
µSD
l,n−1 (t)

)2µl,n−1 (t)

+

(
µSD
l,n−1 (t)

)2

(σ (t))
2
+
(
µSD
l,n−1 (t)

)2 D̃ (t) ,

(14)

(
µSD
ln (t)

)2
=

(σ (t))
2
(
µSD
l,n−1 (t)

)2

(σ (t))
2
+
(
µSD
l,n−1 (t)

)2 , (15)
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F (t) =
∑
l∈N

TCINl
(t) +

∑
i∈N+

TCIi (t)

+
∑
l∈N+

TCSl
(t) , (30)

and state equations (7)− (11),

and initial condition (13),

where λINl
(t) , λI (t) ,ΛINl

(t), and ΛI (t) are adjoint vari-
ables, and χ[0,T−rij ] (t) is a binary variable taking the value
of 1 if it is t ∈ [0, T − rij ] and 0 otherwise.

3.2 Optimal Control Strategy

From the optimality conditions, the optimal solutions
(IN∗ (t) , I∗ (t) , S∗

ij (t)) are as follows (however, a part
of them and their detailed derivation process is omitted
because of space limitations):

I∗ (t) =




I (0) , t ∈ (0, r12] ,

I (0) exp

(
−t

√
h′
2

c

)
1 + y2I (t)

1 + y2I (r12)
,

t ∈ (r12, T ] ,

(31)

IN∗ (t) = U (t)
[
IN∗ (r123)−

∫ t

r123

DSD (s)

U (s)
dz (s)

]
,

t ∈ (r123, T ] , (32)

S∗
12 (t) = −

√
h′
2

c

1− y2I (t+ r12)

1 + y2I (t+ r12)
I∗ (t+ r12)

+ S∗
23 (t+ r12) , t ∈ [0, T − r12) , (33)

S∗
23 (t) = Ŝ (t+ r23) , t ∈ [r12, T − r23) , (34)

S∗
13 (t) = Ŝ (t+ r13) , t ∈ [0, T − r13) , (35)

Ŝ (t) = − exp

[
(r123 − t)

√
2h′

IN

c

]√
h′
IN

2c

1− y2IN (t)

1 + y2IN (r123)

×
[
IN∗ (r123)−

∫ t

r123

DSD (s)

U (s)
dz (s)

]

+
D (t)

2
, t ∈ [r123, T ] , (36)

where variables are as follows:

U (t) =




exp
[
(r13 − t)

√
h′
IN

c

] ψ+ − ψ−y2IN (t)

ψ+ − ψ−y2IN (r13)
,

t ∈ (r13, r123] ,

exp
[
(r123 − t)

√
2h′

IN

c

] 1 + y2IN (t)

1 + y2IN (r123)
,

t ∈ (r123, T ] ,

(37)

yI (t) = exp
(
(t− T )

√
h′
2

c

)
, t ∈ [r12, T ] , (38)

yIN (t) =



exp

[
(t− r123)

√
h′
IN

c

]
, t ∈ [r13, r123) ,

exp
[
(t− T )

√
2h′

IN

c

]
, t ∈ [r123, T ) ,

(39)

ψ± = 2
√
ch′

IN

(1− y2IN (r123)

1 + y2IN (r123)
± 1

)
, (40)

where 0 < yI (t) , yIN (t) ≤ 1, ψ− < 0.

At first, we analyze the optimal dynamics of inventory at
the secondary depot and prove the following result:

Theorem 1. There is no need to pre-store at the secondary
depot and to add stock after a disaster, that is, I∗ (t) =
0 ∀t ∈ [0, T ].

Proof. Although the optimal amount of inventories is
clearly I∗ (t) > 0 from the Eqs.(11)(31), the derivative
of I∗ (t) is,

İ∗ (t) = −I (0) exp

(
−t

√
h′
2

c

)
1− yI (t)

1 + yI (r12)
< 0, (41)

and the limit of I∗ (T ) is,

lim
T→∞

I∗ (T ) = I (0) · 0 · 2

1 + 0
= 0, (42)

hence, I∗ (t) asymptotically approaches 0 from the initial
value I (0) ≥ 0. Actually, the initial value I (0), that is the
amount of pre-stocks, is also a variable. Then, we solve
the optimal amount of pre-stocks I∗ (0) which minimizes
the objective function shown in Eq.(12). From the optimal
solutions Eq.(31)-(40), the first derivative of the optimal
objective function V ∗ = minV is as follows:

∂V ∗

∂I (0)
= 2h′

2I (0)
[
r12 +

∫ T

r12

exp
(
−2t

√
h′
2

c

)

× 1 + y4IN (t)

(1 + y2IN (r12))2
dt
]
. (43)

Because [·] in Eq.(43) is obviously nonnegative, I∗ (0) = 0,
the optimal amount of inventory at the secondary depot,
is I∗ (t) = 0 ∀t ∈ [0, T ].

Next, we analyze the optimal control path and clarify
that ”Direct Supply” is effective. Specifically, we prove the
following result:

Theorem 2. E[S∗
13 (t)] > E[S∗

12 (t)] = E[S∗
23 (t+ r12)] ∀t ∈

[r123 − r13, T − r123).

Proof. From Eqs.(33)-(36) and Theorem 1, throughputs
are as follows:

S∗
12 (t) = Ŝ (t+ r123) , (44)

S∗
23 (t) = S∗

12 (t− r12) , (45)

S∗
13 (t) = Ŝ (t+ r13) , (46)

where S∗
12 (t) < S∗

13 (t) when Ŝ (t) decreases narrowly,
because r13 < r123. However, the wiener process z (t) in-

cluded in Ŝ (t) makes it impossible to directly differentiate

Ŝ (t). Then the expected value of Ŝ (t),

E
[
Ŝ (t)

]
= − exp

[
(r123 − t)

√
2h′

IN

c

]√
h′
IN

2c

× 1− y2IN (t)

1 + y2IN (r123)
E [IN∗ (r123)] +

D (t)

2
, (47)

is differentiated as follows:
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µl0 (t) = D (t) , µSD
l0 (t) = DSD (t) , (16)

where σ (t) is the standard deviation of the likelihood
distribution (the conditional probability distribution to

obtain D̃ (t) when depot l predicts as µl,n−1 (t)), µln (t)
and µSD

ln (t) are the mean value and standard deviation,
respectively, of the posterior distribution in the n-th up-
date. Moreover, parameters D (t) and DSD (t), respec-
tively, represent the mean value and standard deviation
of the predicted demand D(t) at the shelter.

Next, subjective demand Dln (t) is predicted in the n-th
update using the posterior distribution. When each distri-
bution is normal, the probability distribution (predicted
distribution) of Dln (t) is updated as follows:

Dln (t) = µln (t) , (17)
(
DSD

ln (t)
)2

=
(
µSD
ln (t)

)2
+ (σ (t))

2
, (18)

where Dln (t) and DSD
ln (t), respectively, indicate the mean

value and standard deviation of the predicted distribution.
Since subjective demand follows a normal distribution
according to Eq.(8), it can be updated using Eqs.(14)-(18).
Considering that demand is unsteady after a disaster, it
is necessary to predict the demand until the next update,
if the information updating is occasional. We define the
mean value of each distribution as follows:

Dln (t) = −Dln (nkl)

T − nkl
(t− T ) , t ∈ [nkl, nkl + kl) , (19)

µln (t) = Dln (t) , n = 0, 1, ..., ⌊T/ki⌋ − 1, (20)

and standard deviation as a constant until the next up-
date. When information is updated at kl intervals, we have,

Dl (t) = Dln (t) , t ∈ [nkl, nkl + kl) , (21)

DSD
l (t) = DSD

ln (t) , n = 0, 1, ..., ⌊T/kl⌋ − 1, (22)

where update intervals kl become smaller as depot l is
closer to the shelter (k1 > k2) because information is
signaled step by step as in the Kanban System. In this re-
search, we analyze the pull-mode support with subjective
demand Dl (t) updated using this information updating
algorithm. By contrast, for the push-mode support, pre-
dicted demand D (t) is not updated (D1 (t) = D2 (t) =
D (t)) because of transportation without a request from
the shelter. Therefore, the subjective net inventories are
always equivalent (IN1 (t) = IN2 (t) = IN (t)). In other
words, the push- and pull-mode are modeled only depend-
ing on whether this information updating algorithm is
applied or not, which means that they can be evaluated
using the same objective function Eq.(12).

The Bullwhip Effect This section shows that our infor-
mation updating algorithm can model the bullwhip effect.
For simplicity, we assume demand to be steady. In business
logistics, the bullwhip effect is quantitatively evaluated us-
ing the value obtained by dividing the variance of the order
quantity by that of the demand. Based on this, we use the
variance ratio of the subjective demand. Since the number
of information updating n decreases in the upstream of
the SC network (because k1 > k2), (D

SD
l,n−1)

2/(DSD
ln )2 > 1

implies the bullwhip effect. Additionally, since σ does not

depend on n, from Eq.(18) (µSD
l,n−1)

2/(µSD
ln )2 > 1 also im-

plies the bullwhip effect. Letting ν = σ−2, νln = (µSD
ln )−2,

we obtain,

νln = νl,n−1 + ν, (23)

(µSD
l,n−1)

2

(µSD
ln )2

=
νln

νl,n−1
=

νl,n−1 + ν

νl,n−1
> 1. (24)

3. ANALYSIS OF OPTIMAL CONTROL

In this section, we derive optimal solutions of the stochas-
tic optimal control problem and clarify the properties of
the push-mode support. Functions fI (x) , fB (x) , fS (x)
are defined as follows:

fI (x) = fB (x) = fS (x) = xα, α > 1, (25)

where minimizing the objective function (12) is equivalent
to maximizing the cost disorder, because α > 1. We let α =
2 to derive the optimal solution explicitly. Furthermore,
the following equations are assumed.

Assumption To derive the optimal solution explicitly
from the stochastic optimal control problem shown in
Eqs.(1)-(13), the assumptions are as follows:

(1) Let T be the time when demand becomes 0, Dl (T ) =
0.

(2) Demand decreases constantly over time, dDl (t) /dt =

Ḋl < 0.
(3) The inventory holding cost at the shelter is twice that

at the primary depot, h′
IN = 2h′

1.
(4) The secondary depot is not ready after a disaster,

S23 (t) = 0, ∀t ∈ [0, r12).

Assumptions (1) and (2) allow the optimal solution to
be expressed in closed-form as possible, making in readily
interpretable. To solve the stochastic differential equations
called adjoint equations shown in section 3.1, assumptiona
(3) and (4) are necessary, however their detailed solution
process is omitted because of space limitations. Assump-
tions (1)-(3) are realistic. However, Assumption (4) has
limitations in that the secondary depot cannot transport
relief goods to the shelter immediately after the disaster.

3.1 Optimality Conditions

The optimality conditions of the optimization problem
shown in Eqs.(1)-(13) are obtained using the maximum
principle as follows:

S∗
ij (t) = arg min

Sij

{H (t) + χ[0,T−rij ] (t) [H (t+ rij)]}

∀j ∈ Ci, i ∈ N+, (26)

dλINl
(t) = −2hlINl (t) dt+ ΛINl

(t) dzl (t) ,

λINl
(T ) = 0, ∀l ∈ N+, (27)

λ̇I (t) = −2h′
2I (t) , λI (T ) = 0, (28)

H (t) = F (t) +
∑
l∈N+

λINl
(t)

[∑
i∈P3

Si3 (t− ri3)−Dl (t)
]

+ λI (t) (S12 (t− r12)− S23 (t)) (29)

−
∑
l∈N+

ΛINl
(t)DSD

l (t) ,
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F (t) =
∑
l∈N

TCINl
(t) +

∑
i∈N+

TCIi (t)

+
∑
l∈N+

TCSl
(t) , (30)

and state equations (7)− (11),

and initial condition (13),

where λINl
(t) , λI (t) ,ΛINl

(t), and ΛI (t) are adjoint vari-
ables, and χ[0,T−rij ] (t) is a binary variable taking the value
of 1 if it is t ∈ [0, T − rij ] and 0 otherwise.

3.2 Optimal Control Strategy

From the optimality conditions, the optimal solutions
(IN∗ (t) , I∗ (t) , S∗

ij (t)) are as follows (however, a part
of them and their detailed derivation process is omitted
because of space limitations):

I∗ (t) =




I (0) , t ∈ (0, r12] ,

I (0) exp

(
−t

√
h′
2

c

)
1 + y2I (t)

1 + y2I (r12)
,

t ∈ (r12, T ] ,

(31)

IN∗ (t) = U (t)
[
IN∗ (r123)−

∫ t

r123

DSD (s)

U (s)
dz (s)

]
,

t ∈ (r123, T ] , (32)

S∗
12 (t) = −

√
h′
2

c

1− y2I (t+ r12)

1 + y2I (t+ r12)
I∗ (t+ r12)

+ S∗
23 (t+ r12) , t ∈ [0, T − r12) , (33)

S∗
23 (t) = Ŝ (t+ r23) , t ∈ [r12, T − r23) , (34)

S∗
13 (t) = Ŝ (t+ r13) , t ∈ [0, T − r13) , (35)

Ŝ (t) = − exp

[
(r123 − t)

√
2h′

IN

c

]√
h′
IN

2c

1− y2IN (t)

1 + y2IN (r123)

×
[
IN∗ (r123)−

∫ t

r123

DSD (s)

U (s)
dz (s)

]

+
D (t)

2
, t ∈ [r123, T ] , (36)

where variables are as follows:

U (t) =




exp
[
(r13 − t)

√
h′
IN

c

] ψ+ − ψ−y2IN (t)

ψ+ − ψ−y2IN (r13)
,

t ∈ (r13, r123] ,

exp
[
(r123 − t)

√
2h′

IN

c

] 1 + y2IN (t)

1 + y2IN (r123)
,

t ∈ (r123, T ] ,

(37)

yI (t) = exp
(
(t− T )

√
h′
2

c

)
, t ∈ [r12, T ] , (38)

yIN (t) =



exp

[
(t− r123)

√
h′
IN

c

]
, t ∈ [r13, r123) ,

exp
[
(t− T )

√
2h′

IN

c

]
, t ∈ [r123, T ) ,

(39)

ψ± = 2
√
ch′

IN

(1− y2IN (r123)

1 + y2IN (r123)
± 1

)
, (40)

where 0 < yI (t) , yIN (t) ≤ 1, ψ− < 0.

At first, we analyze the optimal dynamics of inventory at
the secondary depot and prove the following result:

Theorem 1. There is no need to pre-store at the secondary
depot and to add stock after a disaster, that is, I∗ (t) =
0 ∀t ∈ [0, T ].

Proof. Although the optimal amount of inventories is
clearly I∗ (t) > 0 from the Eqs.(11)(31), the derivative
of I∗ (t) is,

İ∗ (t) = −I (0) exp

(
−t

√
h′
2

c

)
1− yI (t)

1 + yI (r12)
< 0, (41)

and the limit of I∗ (T ) is,

lim
T→∞

I∗ (T ) = I (0) · 0 · 2

1 + 0
= 0, (42)

hence, I∗ (t) asymptotically approaches 0 from the initial
value I (0) ≥ 0. Actually, the initial value I (0), that is the
amount of pre-stocks, is also a variable. Then, we solve
the optimal amount of pre-stocks I∗ (0) which minimizes
the objective function shown in Eq.(12). From the optimal
solutions Eq.(31)-(40), the first derivative of the optimal
objective function V ∗ = minV is as follows:

∂V ∗

∂I (0)
= 2h′

2I (0)
[
r12 +

∫ T

r12

exp
(
−2t

√
h′
2

c

)

× 1 + y4IN (t)

(1 + y2IN (r12))2
dt
]
. (43)

Because [·] in Eq.(43) is obviously nonnegative, I∗ (0) = 0,
the optimal amount of inventory at the secondary depot,
is I∗ (t) = 0 ∀t ∈ [0, T ].

Next, we analyze the optimal control path and clarify
that ”Direct Supply” is effective. Specifically, we prove the
following result:

Theorem 2. E[S∗
13 (t)] > E[S∗

12 (t)] = E[S∗
23 (t+ r12)] ∀t ∈

[r123 − r13, T − r123).

Proof. From Eqs.(33)-(36) and Theorem 1, throughputs
are as follows:

S∗
12 (t) = Ŝ (t+ r123) , (44)

S∗
23 (t) = S∗

12 (t− r12) , (45)

S∗
13 (t) = Ŝ (t+ r13) , (46)

where S∗
12 (t) < S∗

13 (t) when Ŝ (t) decreases narrowly,
because r13 < r123. However, the wiener process z (t) in-

cluded in Ŝ (t) makes it impossible to directly differentiate

Ŝ (t). Then the expected value of Ŝ (t),

E
[
Ŝ (t)

]
= − exp

[
(r123 − t)

√
2h′

IN

c

]√
h′
IN

2c

× 1− y2IN (t)

1 + y2IN (r123)
E [IN∗ (r123)] +

D (t)

2
, (47)

is differentiated as follows:
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Fig. 3. Comparison of the objective functions of the push- and pull-mode support(left:case-a, right:case-b)

origin. V pull (30, 30) is equal to V push because (k1, k2) =
(30, 30) means that n is 0. The numbers and color in the
graph indicate the probability P, where red shows that
the push-mode is more effective than the pull-mode and
blue shows the opposite.

The left side of Fig.3 shows that the push-mode tends to
be more effective when k1 ̸= k2; in addition, as k1 − k2
becomes larger, the probability P becomes smaller, that
is, the push-mode becomes more effective. On the other
hand, when k1 = k2 the pull-mode is more effective, in
addition, the pull-mode becomes more effective the closer
it is to the origin. Therefore, it is suggested that the
pull-mode can be effective under information synchrony
among the depots, which indicates that ”Transmission
system without ICT” may be an undesirable strategy and
that the information paradox, wherein the system gets
worse by using information, may occur under information
asynchrony.

The right side of Fig.3 shows case-b, where the push-
mode is more effective regardless of kl. In other words, the
pull-mode becomes a bad strategy in the situation where
each depot has different prediction errors. In summary,
the necessary conditions for the pull-mode to be effective
are not only information synchrony, but also sharing of
prediction errors.

5. DISCUSSION AND CONCLUSION

This research proposed the inventory distribution model
to clarify the mathematical properties of empirical strate-
gies. Our proposed model was formulated as a stochastic
optimal control problem which can analyze the optimal
control strategy on a simple supply chain network. As a
result, it was revealed that direct supply from the primary
depot to the shelter and abolition of the secondary depot

are effective. Moreover, we showed that under information
asynchrony the information paradox may occur.

From these results, we propose new control strategies as
shown in Fig.4 and 5. For the push-mode support, relief
goods are transported directly from the primary depot to
the shelter rather than via the secondary depot (Fig.4).
By contrast, Fig.5 shows the pull-mode proposed strategy.
To satisfy the necessary conditions for the pull-mode to
be more effective than the push-mode, the control tower
manages the information to avoid information asynchrony

without secondary depot

Push-type supply

Have positive inventory
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Primary depot
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Indicate 

optimal strategies

Control tower

Indicate 

optimal strategies

Information Flow

Relief Goods Flow

Fig. 4. Proposed control strategy (Push-mode support)
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dE
[
Ŝ (t)

]
/dt = exp

[
(r123 − t)

√
2h′

IN

c

]h′
IN

c

× 1 + y2IN (t)

1 + y2IN (r123)
E [IN∗ (r123)] +

Ḋ

2
. (48)

From Eqs.(7)(13)(35) and Assumption (4), we obtain,

E [IN∗ (r123)]

= U (r123)
[
E [IN∗ (r13)]−

cḊ

2h′
IN

]
+ c

[ Ḋ

2h′
IN

−
(
D (r123) +

ḊψIN (r123)

2h′
IN

) 1− y2IN (r13)

ψ+ − ψ−y2IN (r13)

]

= U (r123)E [IN∗ (r13)]− cD (r123)
1− y2IN (r13)

ψ+ − ψ−y2IN (r13)

− cḊ

2h′
IN

[
U (r123)− 1 + ψIN (r123)

1− y2IN (r13)

ψ+ − ψ−y2IN (r13)

]
, (49)

where [·] in Eq.(49) is,

U (r123)− 1 + ψIN (r123)
1− y2IN (r13)

ψ+ − ψ−y2IN (r13)

= yIN (r13)
4
√
ch′

IN

ψ+ − ψ−y2IN (r13)
−

4
√
ch′

IN

ψ+ − ψ−y2IN (r13)

+ 2
√

ch′
IN

1− y2IN (r13)

ψ+ − ψ−y2IN (r13)

= −
2
√
ch′

IN

ψ+ − ψ−y2IN (r13)
(yIN (r13)− 1)

2
< 0. (50)

From Eqs.(49)(50) and Assumption (2), we obtain
E [IN∗ (r123)] < 0 and

dE
[
Ŝ (t)

]

dt
< 0. (51)

This completes the proof.

The parameter α(= 2) indicates a weight of cost disorder,
which provides an optimal control without deviation, that
is S∗

12 (t) ̸= 0. In other words, when α → 1, the optimal
control can be expected to involve only direct supply. From
Theorem 1, there is no need to add stock at the secondary
depot, and from Theorem 2, the optimal control can be
expected to involve only direct supply; therefore, it is clear
that ”Abolition of the secondary depot” is effective.

Finally, we show the dynamic property of the optimal net
inventory at the shelter.

Theorem 3. Maintaining positive inventory at the shelter
is the optimal strategy when demand is uncertain and the
penalty cost for falling short in supply is sufficiently high,
that is, IN∗ (t) ≥ 0, if DSD (t) ̸= 0 and b → ∞.

Proof. From Eq.(37), we obtain limT→∞ U (T ) = 0. Then
the long-term expected value µ∞ = limT→∞ E [IN∗ (T )]
is as follows:

µ∞ = lim
T→∞

E [IN∗ (T )] = 0 · E [IN∗ (r123)] = 0. (52)

Also, from Eqs.(7)(32)(34)(35)(36)(52), we obtain the dy-
namics of IN∗ (t),

Table 1. Parameter settings

t [0, 10) [10, 20) [20, 30]

D̃ (t) 4 2 1

D (t) −0.15 (t− T )

{DSD (t) , σ (t)} {100, 50}
{r12, r23, r13} {h′

2, h
′
3, b} c IN (0)

{3, 2, 4} {0.5, 0.7, 1} 10 -200

dIN∗ (t) = −
√

2h′
IN

c

1− y2IN (t)

1 + y2IN (t)
[IN∗ (t)− µ∞] dt

−DSD (t) dz (t) , (53)

where

√
2h′

IN

c
1−y2

IN (t)

1+y2
IN

(t)
= v ≥ 0; thus, Eq.(53) means that

dIN∗ (t)




< 0 IN∗ (t) > µ∞,

= 0 IN∗ (t) = µ∞,

> 0 IN∗ (t) < µ∞.

(54)

This stochastic differential equation is called the Ornstein-
Uhlenbeck process (Uhlenbeck and Ornstein (1930)). Then
we focus on the regression speed v. From Eq.(2), the
parameter h′

IN is

h′
IN =

{
h′
3 IN (t) ≥ 0

b IN (t) < 0
, (55)

where h′
3 < b. After a disaster, the penalty cost for falling

short in supply is considered to be sufficiently high, that
is b → ∞ and we obtain |v| → ∞. In other words,
if supplies are short (IN∗ (t) < 0) IN∗ (t) momentarily
returns to µ∞(= 0), and otherwise (IN∗ (t) ≥ 0) it
returns at speed |v| < ∞, which means that the optimal
strategy is to maintain positive inventory at the shelter.
This inventory strategy is optimal only when considering
demand uncertainty because when DSD (t) = 0, from
Eqs.(53)(54), IN∗ (t) only approaches µ∞(= 0) from the
initial value IN (0) < 0.

4. NUMERICAL EXAMPLE

4.1 Settings

This section clarifies the property of the pull-mode support
under information asynchrony, comparing the objective
functions of the push- and pull-mode which are calculated
by the Monte Carlo simulation. The parameters are set
in Table.1, and two cases, called case-a and case-b, are
examined. Case-a is a situation where depots can share
prediction errors zl(t), that is R[z1(t), z2(t)] = 1. By
contrast, case-b is a situation where each depot has dif-
ferent prediction errors, R[z1(t), z2(t)] ̸= 1. The stochastic
differentiation dzl(t) of zl(t) is calculated using the Euler-
Maruyama method (Maruyama (1955)).

4.2 Results

Fig.3 shows the probability P = Prob(V push > V pull(k1,
k2)), where V push is the objective function of the push-
mode support and V pull (k1, k2) is that of the pull-mode
support. The horizontal and vertical axis represent the
information update intervals (k1, k2), where the number of
information updating n is higher as (k1, k2) approaches the
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Fig. 3. Comparison of the objective functions of the push- and pull-mode support(left:case-a, right:case-b)

origin. V pull (30, 30) is equal to V push because (k1, k2) =
(30, 30) means that n is 0. The numbers and color in the
graph indicate the probability P, where red shows that
the push-mode is more effective than the pull-mode and
blue shows the opposite.

The left side of Fig.3 shows that the push-mode tends to
be more effective when k1 ̸= k2; in addition, as k1 − k2
becomes larger, the probability P becomes smaller, that
is, the push-mode becomes more effective. On the other
hand, when k1 = k2 the pull-mode is more effective, in
addition, the pull-mode becomes more effective the closer
it is to the origin. Therefore, it is suggested that the
pull-mode can be effective under information synchrony
among the depots, which indicates that ”Transmission
system without ICT” may be an undesirable strategy and
that the information paradox, wherein the system gets
worse by using information, may occur under information
asynchrony.

The right side of Fig.3 shows case-b, where the push-
mode is more effective regardless of kl. In other words, the
pull-mode becomes a bad strategy in the situation where
each depot has different prediction errors. In summary,
the necessary conditions for the pull-mode to be effective
are not only information synchrony, but also sharing of
prediction errors.

5. DISCUSSION AND CONCLUSION

This research proposed the inventory distribution model
to clarify the mathematical properties of empirical strate-
gies. Our proposed model was formulated as a stochastic
optimal control problem which can analyze the optimal
control strategy on a simple supply chain network. As a
result, it was revealed that direct supply from the primary
depot to the shelter and abolition of the secondary depot

are effective. Moreover, we showed that under information
asynchrony the information paradox may occur.

From these results, we propose new control strategies as
shown in Fig.4 and 5. For the push-mode support, relief
goods are transported directly from the primary depot to
the shelter rather than via the secondary depot (Fig.4).
By contrast, Fig.5 shows the pull-mode proposed strategy.
To satisfy the necessary conditions for the pull-mode to
be more effective than the push-mode, the control tower
manages the information to avoid information asynchrony
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among depots and instructs them regarding the optimal
strategies to share prediction errors.

Future research should clarify the properties for a gen-
eral SC network, where there are multiple depots and
shelters. For efficient logistics, it is essential to consider
the economies of agglomeration caused by collecting relief
goods and logistics equipment. For example, when there
are multiple shelters as in a general network, indirect sup-
ply (collecting relief goods at secondary depots and trans-
porting) is expected to be more efficient than direct supply.
Thus, analyzing a general SC network may reveal different
properties from this research. Although our concerns in the
analysis of a general network are competitive throughputs
with the same origin/destination, independent properties
of optimal throughputs from inventories at origin depots
have an implication for the applicability of our proposed
model to the analysis of a general network.

Additionally, to improve our information updating algo-
rithm is a more challenging task. In this research, the
Bayesian updating process was applied to model informa-
tion asynchrony but the value or reliability of information
cannot be considered. After a disaster there are many
kinds of information and their reliability is diverse. In
order to solve this problem, information priorities and
selection systems such as demand forecasting using data
fusion as in Sheu (2010) are necessary. Subjective demand
depends greatly on the value of information; hence, future
research can improve the information updating algorithm.
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